Electronic Structure of Conductive and Conjugated Polymers

  • Yoshikazu Tanabe
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 35)

Abstract

Ordinary polymers are used predominantly as insulators and will continue to be in the future. The discovery of high conductivity in change-transfer complexes formed with polyacetylene (PA) in 1977 [1,2] has aroused considerable excitement among polymer scientists and condensed matter physicists throughout the world. Although insulating carbon-chain polymers have a saturated electronic structure in which all of the four carbon valence electrons are combined in covalent bonds, conducting carbon-chain polymers have a conjugated structure in which sp2 + pz hybridization leads to one unpaired electron per carbon atom. The delocalized (extended) π-electrons form a band structure which exhibits semiconducting or even metallic properties.

Keywords

Microwave Graphite Soliton Pyrolysis Oligomer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. K. Chiang, C. R. Fincher Jr., H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977)CrossRefGoogle Scholar
  2. [2]
    J. C. W. Chien, Polyacetylene (Chemistry, Physics, and Material Science), (Academic Press, Orlando, 1984)Google Scholar
  3. [3]
    A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. -P. Su, Rev. Mod. Phys. 60, 781 (1988)CrossRefGoogle Scholar
  4. [4]
    J. L. Brédas, R. R. Chance, R. Silbey, G. Nicolas, and Ph. Durand, J. Chem. Phys. 75, 255 (1981)CrossRefGoogle Scholar
  5. [5]
    J. L. Brédas, R. R. Chance, and R. H. Baughman, J. Chem. Phys. 76 3673 (1982)CrossRefGoogle Scholar
  6. [6]
    J. L. Brédas, Adv. Mater. 7, 263 (1995)CrossRefGoogle Scholar
  7. [7]
    P. Vogl and D. K. Campbell, Phys. Rev. Lett. 62, 2012(1989)CrossRefGoogle Scholar
  8. [8]
    P. Gomes da Costa, R. G. Dandrea, and E. M. Conwell, Phys. Rev. B47, 1800 (1993-II)Google Scholar
  9. [9]
    D. Baeriswyl,Theoretical Aspects of BandStructures and Electronic Properties of Pseudo-One-Dimensional Solids, H. Kamimura, Ed. (D. Reidel Publishing Co., Dordrecht, 1985) pp.1–48CrossRefGoogle Scholar
  10. [10]
    S. Okuno, and Y. Onodera, J. Phys. Soc. Jpn. 52 3495 (1983)CrossRefGoogle Scholar
  11. [11]
    N. C. Greenham, and R. H. Friend, Solid State Phys. 49, 1 (1995)CrossRefGoogle Scholar
  12. [12]
    J. L. Brédas, J. C. Scott, K. Yakushi, and G. B. Street, Phys. Rev. B30, 1023 (1984)Google Scholar
  13. [13]
    M. Murakami, S. Yoshimura, and S. Iijima, Appl. Phys. Lett. 48(6), 390 (1986)CrossRefGoogle Scholar
  14. [14]
    S. Yata, Y. Hato, H. Kinoshita, N. Ando, A. Anekawa, T. Hashimoto, M. Yamaguchi, K. Tanaka, and T. Yamabe, Synth. Met. 73, 273 (1995)CrossRefGoogle Scholar
  15. [15]
    T. Ogawa, J. Phys. Soc. Jpn. 63 (Suppl. B),120 (1994)Google Scholar
  16. [16]
    K. Takeda, and K. Shiraishi, Phys. Rev. B39, 11028 (1989-II)Google Scholar
  17. [17]
    H. Tachibana, Y. Kawabata, S. Koshihara, T. Arima, Y. Moritomo, and Y. Tokura, Phys. Rev. B44, 5487 (1991-I)Google Scholar
  18. [18]
    S. Abe, J. Phys. Soc. Jpn. 63 (Suppl.B), 56 (1994)Google Scholar
  19. [19]
    K. Ito, Y. Tanabe, K. Akagi, and H. Shirakawa, Phys. Rev. B45, 1246 (1992-I)Google Scholar
  20. [20]
    Y. Tanabe, Synth. Met. 85 1123 (1997)CrossRefGoogle Scholar
  21. [21]
    T. Ishiguro, H. Kaneko, Y. Nogami, H. Ishimoto, H. Nishiyama, J. Tsukamoto, A. Takahashi, M. Yamaura, T. Hagiwara, and K. Sato, Phys. Rev. Lett. 69 660 (1992)CrossRefGoogle Scholar
  22. [22]
    R. S. Kohlman, J. Joo, Y. Z. Wang, J. P. Pouget, H. Kaneko, T. Ishiguro, and A. J. Epstein, Phys. Rev. Lett. 74 773 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Yoshikazu Tanabe

There are no affiliations available

Personalised recommendations