Skip to main content

Psychophysical Methods

  • Chapter

Abstract

When Fechner (1860/1966) introduced the new transdisciplinary research program of “Psychophysik”,his goal was to present a scientific method of studying the relations between body and mind, or, to put it more precisely, between the physical and phenomenal worlds. The key idea underlying Fechner’s psychophysics was that body and mind are just different reflections of the same reality. From an external, objective viewpoint we speak of processes in the brain (i.e., of bodily processes). Considering the same processes from an internalized, subjective viewpoint, we can speak of processes of the mind. In suggesting that processes of the brain are directly reflected in processes of the mind, Fechner anticipated one of the main goals of modern neuroscience, which is to establish correlations between neuronal (objective) and perceptual (subjective) events.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson J, Braddick O (1999) Research methods in infant vision. In: Carpenter RHS, Robson JG, eds., Vision research. A practical guide to laboratory methods. Oxford University Press, Oxford, pp. 161–186

    Google Scholar 

  • Békésy G von (1947) A new audiometer. Acta Otolaryngol 35: 411–422

    Article  Google Scholar 

  • Bergmann C (1858) Anatomisches und Physiologisches über die Netzhaut des Auges. In: Henle J, Pfeufer C von (eds) Zeitschrift für rationelle Medicin, Dritte Reihe, II. Band. Winter, Leipzig & Heidelberg, pp 83–108

    Google Scholar 

  • Berkley MA, Stebbins WC, eds. (1990) Comparative perception. Wiley, New York.

    Google Scholar 

  • Blackwell HR (1952) Studies of psychophysical methods for measuring visual thresholds. J Opt Soc Amer 42: 624–643

    Google Scholar 

  • Blake R (1999) The behavioural analysis of animal vision. In: Carpenter RHS, Robson JG, eds., Vision research. A practical guide to laboratory methods. Oxford Univ. Press, Oxford, pp. 137–160.

    Google Scholar 

  • Borg G, Diamant H, Ström L, Zotterman Y (1967) The relation between neural and perceptual intensity: A comparative study on the neural and psychophysical response to taste stimuli. J Physiol 192: 13–20

    Google Scholar 

  • Breitmeyer BG (1975) Simple reaction time as a measure of the temporal response properties of transient and sustained channels. Vision Res 15: 1411–1412

    Article  PubMed  CAS  Google Scholar 

  • Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: A comparison of neuronal and psychophysical performance. J Neurosci 12: 4745–4765

    Google Scholar 

  • Coren S, Ward LM, Enns JT (1994) Sensation and perception. Harcourt Brace & Co, Forth Worth TX, 4th ed

    Google Scholar 

  • Cornsweet TN (1962) The staircase-method in psychophysics. Amer J Psychol 75: 485–491.

    Article  PubMed  CAS  Google Scholar 

  • Delius JD, Emmerton J (1978) Stimulus dependent asymmetry in classical and instrumental discrimination learning by pigeons. Psychol Rec 28: 425–434

    Google Scholar 

  • Ehrenberger K, Finkenzeller P, Keidel WD, Plattig KH (1966) Elektrophysiologische Korrelation der Stevensschen Potenzfunktion and objektive Schwellenmessung am Vibrationssinn des Menschen. Pflügers Arch 290: 114–123

    Article  CAS  Google Scholar 

  • Ehrenstein A, Schweickert R, Choi S, Proctor RW (1997) Scheduling processes in working memory: Instructions control the order of memory search and mental arithmetic. Q J Exp Psychol 50A: 766–802

    Google Scholar 

  • Ehrenstein WH (1994) Auditory aftereffects following simulated motion produced by varying interaural intensity or time. Perception 23: 1249–1255

    Article  PubMed  CAS  Google Scholar 

  • Ehrenstein WH, Manny K, Oepen G (1985) Foveal interocular time thresholds and latency differences in multiple sclerosis. J Neurol 231: 313–318

    Article  PubMed  CAS  Google Scholar 

  • Ehrenstein WH, Hamada J, Müller M, Cavonius CR (1992) Psychophysics of suprathreshold brightness differences: a comparison of reaction time and rating methods. Perception 21, sup-pl 2: 82

    Google Scholar 

  • Farell B, Pelli DG (1999) Psychophysical methods, or how to measure a threshold, and why. Carpenter RHS, Robson JG, eds., Vision research. A practical guide to laboratory methods. Oxford University Press, Oxford, pp. 129–136

    Google Scholar 

  • Fechner GT (1860/1966) Elemente der Psychophysik. Breitkopf & Härtel, Leipzig (reprinted in 1964 by Bonset, Amsterdam); English translation by HE Adler ( 1966 ): Elements of psychophysics. Holt, Rinehart & Winston, New York

    Google Scholar 

  • Gazzaniga MS, ed (1995) The cognitive neurosciences. MIT Press, Cambridge, MA

    Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Grösser OJ, Grüsser-Cornehls U (1973) Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In: Jung R (ed) Handbook of sensory physiology, vol. VII/3A, Springer, Berlin, pp. 333–429

    Google Scholar 

  • Grunwald E, Bräucker R, Schwartzkopff J (1986) Auditory intensity discrimination in the pigeon (Columba livia) as measured by heart-rate conditioning. Naturwiss 73: 41

    Google Scholar 

  • Haubensak G (1992) The consistency model: A process model for absolute judgments. J Exp Psychol: Hum Perc Perf 18: 303–309

    Article  Google Scholar 

  • Hensel H (1976) Correlations of neural activity and thermal sensation in man.In: Zotterman Y (ed) Sensory functions of the skin in primates. Pergamon Press, Oxford, pp 331–353

    Google Scholar 

  • Jung R (1961a) Korrelationen von Neuronentätigkeit and Sehen. In: Jung R, Kornhuber HH (eds.) Neurophysiologie and Psychophysik des visuellen Systems. Springer, Berlin, pp. 410–435

    Chapter  Google Scholar 

  • Jung R (1961b) Neuronal integration in the visual cortex and its significance for visual information. In: Rosenblith W (ed.) Sensory communication. M.I.T. Press, New Yokr, pp. 629–674.

    Google Scholar 

  • Jung R (1972) Neurophysiological and psychophysical correlates in vision research. In: Karczmar AG, Eccles JC (eds.) Brain and Human Behavior. Springer, Berlin, pp 209–258

    Chapter  Google Scholar 

  • Jung R (1984) Sensory research in historical perspective: Some philosophical foundations of perception. In: Brookhart JM, Mountcastle VB (eds) Handbook of Physiology, vol. III. American Physiological Society. Washington DC, pp 1–74

    Google Scholar 

  • Jung R, Kornhuber H, eds (1961) Neurophysiologie and Psychophysik des visuellen Systems. Springer, Berlin

    Google Scholar 

  • Jung R, Spillmann L (1970) Receptive-field estimation and perceptual integration in human vision. In: Young FA, Lindsley DB (eds), Early experience and visual information processing in perceptual and reading disorders. National Academy Press, Washington, DC, pp. 181–197

    Google Scholar 

  • Keidel WD, Spreng M (1965) Neurophysiological evidence for Stevens’ power function in man. J Acoust Soc Amer 38: 191–195

    Article  CAS  Google Scholar 

  • King-Smith PE, Grigsby SS, Vingrys AJ, Benes SC, Supowit A (1994) Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation. Vision Res 34: 885–912

    Google Scholar 

  • Klump GM, Dooling RJ, Fay RR, Stebbins WC, eds. (1995) Methods in comparative psychoacoustics. Birkhäuser, Basel

    Google Scholar 

  • Lewald J (1987a) The acuity of sound localization in the pigeon (Columba livia). Naturwiss 74: 296–297

    Article  PubMed  CAS  Google Scholar 

  • Lewald J (1987b) Interaural time and intensity difference thresholds of the pigeon (Columba livia). Naturwiss 74: 449–451

    Article  PubMed  CAS  Google Scholar 

  • Lewald J, Ehrenstein WH (1998) Auditory-visual spatial integration: A new psychophysical approach using laser pointing to acoustic targets. J Acoust Soc Am 104: 1586–1597.

    Google Scholar 

  • Lieberman HR, Pentland AP (1982) Microcomputer-based estimation of psychophysical thresholds: The Best PEST. Beh Res Meth Instr 14: 21–25

    Google Scholar 

  • Livingstone M, Hubel D (1988) Segregation of form, color, movement and depth: Anatomy, physiology, and perception. Science 240: 740–750.

    Google Scholar 

  • Link SW (1992) The wave theory of difference and similarity. Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Macmillan NA, Creelman CD (1991) Detection theory. A user’s guide. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Marks LE (1974) Sensory processes. The new psychophysics. Academic Press, New York

    Google Scholar 

  • Müller M, Cavonius CR, Mollon JD (1992) Constructing the color space of the deuteranomalous observer. In: Drum B., Moreland JD, Serra J (eds.) Colour vision deficiencies X. Kluwer, Dordrecht, pp. 377–387

    Google Scholar 

  • Münsterberg H (1894) Studies from the Harvard psychological laboratory: A psychometric investigation of the psycho-physic law. Psychol Rev 1: 45–51

    Google Scholar 

  • Oehler R (1985) Spatial interactions in the rhesus monkey retina: a behavioural study using the Westheimer paradigm. Exp Brain Res 59: 217–225

    Article  PubMed  CAS  Google Scholar 

  • Petrusic WM (1993) Response time based psychophysics. Beh. Brain Sci 16: 158–159

    Article  Google Scholar 

  • Proctor RW, Van Zandt T (1994) Human factors in simple and complex systems. Allyn & Bacon, Boston

    Google Scholar 

  • Robson T (1999) Topics in computerized visual-stimulus generation. In: Carpenter RHS, Robson JG (eds) Vision research. A practical guide to laboratory methods. Oxford University Press, Oxford, pp 81–105

    Google Scholar 

  • Sanders AF (1998) Elements of human performance: Reaction processes and attention in human skill. Erlbaum, Mahwah, NJ

    Google Scholar 

  • Scheerer E (1992) Fechner’s inner psychophysics: Its historical fate and present status. In: Geissler HG, Link SW, Townsend JT (eds) Cognition, information processing, and psychophysics. Erlbaum, Hillsdale NJ, pp 3–21

    Google Scholar 

  • Sekuler R, Blake R (1994) Perception, 3rd ed. McGraw-Hill, New York

    Google Scholar 

  • Sokolov AN, Ehrenstein WH (1996) Absolute judgments of visual velocity. In: Masin S (ed) Fechner Day 96, CLEUP, Padua, pp. 57–62.

    Google Scholar 

  • Spillmann L, Ehrenstein WH (1996) From neuron to Gestalt: Mechanisms of visual perception. In: Greger R, Windhorst U (eds) Comprehensive human physiology, vol. 1. Springer, Berlin, pp 861–893

    Google Scholar 

  • Spillmann L, Ransom-Hogg A, Oehler R (1987) A comparison of perceptive and receptive fields in man and monkey. Hum Neurobiol 6: 51–62

    PubMed  CAS  Google Scholar 

  • Spillmann L, Werner JS, eds (1990) Visual perception: The neurophysiological foundations. Academic Press, San Diego.

    Google Scholar 

  • Stevens SS (1975) Psychophysics: Introduction to its perceptual, neural, and social prospects. Wiley, New York

    Google Scholar 

  • Thurstone LL (1927) A law of comparative judgment. Psychol Rev 34: 273–286.

    Article  Google Scholar 

  • Watson AB, Pelli DG (1983) QUEST: a Bayesian adaptive psychometric method. Perc Psychophys 33: 113–120.

    Article  CAS  Google Scholar 

  • Werner G, Mountcastle VB (1965) Neural activity in mechanoreceptive cutaneous afferents: Stimulus-response relations, Weber functions, and information transmission. J Neurophysiol 28: 359–397

    Google Scholar 

  • Westheimer G (1965) Spatial interaction in the human retina during scotopic vision. J Physiol 181: 881–894

    PubMed  CAS  Google Scholar 

  • Wist ER, Ehrenstein WH, Schrauf M (1998) A computer-assisted test for the electrophysiological and psychophysical measurement of dynamic visual function based on motion contrast. J Neurosci Meth 80: 41–47.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehrenstein, W.H., Ehrenstein, A. (1999). Psychophysical Methods. In: Windhorst, U., Johansson, H. (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58552-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58552-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63643-1

  • Online ISBN: 978-3-642-58552-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics