Skip to main content

Abstract

As known from physics, each current is accompanied by a magnetic field. So are the ionic currents within the brain and the nerves. Using highly sensitive sensors, so-called SQUIDs (“superconducting quantum interference device”) developed during the last three decades, magnetoencephalography (MEG) measures these extremely weak fields outside the head. MEG can pick up the fields associated with the concerted action of a few thousand neurons and thus non-invasively monitor brain activity. With good approximation these fields reflect only intracellular (mostly intradendritic) currents and are insensitive to the extracellular current distribution, in contrast to the scalp potentials measured with EEG (cf. Chapter 35).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham-Fuchs K, Strobach P, Härer W, Schneider S (1993) Improvement of neuromagnetic localization by MCG artifact correction in MEG recordings. In: Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds) Biomagnetism: Fundamental Research and Clinical Applications. Elsevier Science, IOS Press, Amsterdam, Oxford, Burke, Tokyo, pp.787–791

    Google Scholar 

  • Aine C, Okada Y, Stroink G, Swithenby S, Wood CC (1999, in press) Advances in Biomagnetism Research: Biomag96, Springer, New York

    Google Scholar 

  • Andrä W, Nowak H (1998) Magnetism in Medicine - A Handbook. Wiley VCH, Weinheim

    Google Scholar 

  • Bamidis PD, Hellstrand E, Lidholm H, Abraham-Fuchs K, Ioannides AA (1995) MFT in complex partial epilepsy: spatio-temporal estimates of ictal activity. NeuroReport 7: 17–23

    PubMed  CAS  Google Scholar 

  • Barnard CL, Duck IM, Lynn MS (1967) The application of electromagnetic theory to electrocar-diology. I. Derivation of the integral equations. Biophys. Journal 7: 443–462

    Article  CAS  Google Scholar 

  • Becker W, Diekmann V, Jürgens R (1992) Magnetic localization of EEG electrodes for simultaneous EEG and MEG measurements. In: Dittmer A, Froment JC (eds) Proceedings of the Satellite Symposium on Neuroscience and Technology, 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, pp 34–36

    Google Scholar 

  • Becker W, Diekmann V, Jürgens R, Kornhuber C (1993) First experiences with a multichannel software gradiometer recording normal and tangential components of MEG. Physiol Meas 14: A45–50

    Article  PubMed  Google Scholar 

  • Bertrand O, Bohorquez J, Pernier J (1990) Technical requirements for evoked potential monitoring in the intensive care unit. In Rossini PM, Mauguière F (eds) New Trends and Advanced Techniques in Clinical Neurophysiology. Elsevier, Amsterdam, Vol EEG suppl 41: 51–70

    Google Scholar 

  • Buchner H, Knoll G, Fuchs M, Rienacker A, Beckmann R, Wagner M, Silney J, Pesch J (1997) Inverse localization of electric dipole current sources in finite element models of the human head. EEG clin Neurophysiol 102: 267–278

    Article  CAS  Google Scholar 

  • Buckel W, Superconductivity. Fundamentals and Applications (1990). Wiley-VCH, Weinheim

    Google Scholar 

  • Clarke J, Goubau WM, Ketchen MB (1975) Thin-film dc SQUID with low noise and drift. Appl Phys Lett 27: 155–156

    Article  Google Scholar 

  • Clarke J, Goubau WM, Ketchen MB (1976) Tunnel junction dc SQUID fabrication, operation, and performance. J Low Temp Phys 25: 99–144

    Article  CAS  Google Scholar 

  • Cohen D (1970) Large-volume conventional magnetic shields. Rev de Physique Appl 5: 53–58

    Article  Google Scholar 

  • Cuffin BN (1995) A method for localizing EEG sources in realistic head models. IEEE Trans Biomed Eng 42: 68–71

    Article  PubMed  CAS  Google Scholar 

  • Curio G, Neuromagnetic recordings of evoked and injury related activity in the peripheral nervous system (1995). In: Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds) Biomagnetism: Fundamental Research and Clinical Applications. Elsevier Science, IOS Press, Amsterdam, Oxford, Burke, Tokyo, pp. 709–714

    Google Scholar 

  • de Weerd JPC (1981) A posteriori time-varying filtering of averaged potentials. I. Introduction and conceptual basis. Biol. Cybern 41: 211–222

    Article  PubMed  Google Scholar 

  • Diekmann V, Jürgens R, Becker W (1995) Magnetische Lokalisation von Markern. Biomed Tech 40, suppl 1: 211–212

    Google Scholar 

  • Diekmann V, Jürgens R, Becker W, Elias H, Ludwig W, Vodel W (1996) RF-SQUID to DC-SQUID upgrade of a 28-channel magnetencephalography (MEG) system. Meas Sci Technol 7: 844–852

    Article  CAS  Google Scholar 

  • Diekmann V, Becker W, Jürgens R, Grözinger B, Kleiser B, Richter HP, Wollinsky KH (1998) Localisation of epileptic foci with electric, magnetic and combined electromagnetic models. EEG clin Neurophysiol 106: 297–313

    Article  CAS  Google Scholar 

  • Drung D (1995) The PTB-SQUID system for biomagnetic applications in a clinic. IEEE Trans Appl Supercon 5: 2112–2117

    Article  Google Scholar 

  • Erné SN (1983) Squid sensors. In: Williamson SJ, Romani GL, Kaufmann L, Modena I (eds) Bi- omagnetism: An Interdisciplinary Approach. Plenum Press, New York and London, pp. 69–84

    Google Scholar 

  • Fuchs M, Wagner M, Wischmann HA, Dössel O (1995) Cortical current imaging by morphologi- cally constrained reconstructions. In: Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds) Biomagnetism: Fundamental Research and Clinical Applications. Elsevier Science, IOS Press, Amsterdam, Oxford, Burke, Tokyo, pp. 320–325

    Google Scholar 

  • Fujimoto S, Ogata H, Kado S (1993) Magnetic Noise produced by GM-Cryocoolers. Cryocoolers 7: 560–568

    Google Scholar 

  • Gevins A, Smith ME, Le J, Leong H, Bennett J, Martin N, McEvoy L, Du R, Whitfield S (1996) High resolution evoked potential imaging of the cortical dynamic of human working memory. EEG clin Neurophysiol 98: 327–348

    Article  CAS  Google Scholar 

  • Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7: 374–385

    Article  PubMed  CAS  Google Scholar 

  • Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Sig Proc 45: 600–616

    Article  Google Scholar 

  • Grummich P, Kober H, Vieth J (1992) Localization of the underlying currents of magnetic brain activity using spatial filtering. Biomed. Eng. 37 (suppl 2): 158–159

    Google Scholar 

  • Hämäläinen MS, Sarvas J (1989) Realistic geometry model of the human head for the interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36: 165–171

    Article  PubMed  Google Scholar 

  • Hämäläinen MS, Hari R, Ilomoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetencephalography - theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65: 413–497

    Article  Google Scholar 

  • Harakawa K, Kajiwara G, Kazami K, Ogata H, Kado H (1996) Evaluation of High-Performance Magnetically Shielded Room for Biomagnetic Measurement. IEEE Trans Magn 32: 5256–5260

    Article  Google Scholar 

  • Haueisen J, Ramon C, Czapski P, Eiselt M (1995) On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study. Ann Biomed Eng 23: 728–739

    Article  PubMed  CAS  Google Scholar 

  • Haueisen J, Bottner A, Funke M, Brauer H, Novak H (1997a) Effect of boundary element discretization on forward calculation and the inverse problem in electroencephalography and magnetoencephalography. Biomed Technik, 42: 240–248

    Article  CAS  Google Scholar 

  • Haueisen J, Ramon C, Eiselt M, Brauer H, Novak H (1997b) Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng 44: 727–735

    Article  CAS  Google Scholar 

  • Helmholtz H (1853) Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys Chem 89: 211–233; 353–377

    Google Scholar 

  • Huotilainen M, Ilimoniemi RJ, Tiitinen H, Lavikainen J, Alho K, Kajola M, Näätänen R (1995) The projection method in removing eye-blink artefakts from multichannel MEG measurements. In: Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds) Biomagnetism: Fundamental Research and Clinical Applications, Elsevier Science. IOS Press, Amsterdam, Oxford, Burke, Tokyo, pp 363–367

    Google Scholar 

  • Ioannides AA, Liu MJ, Liu LC, Bamidis PD, Hellstrand E, Stefan KM (1995) Magnetic field tomography of cortical and deep processes: examples of “real-time mapping” of averaged and single trial MEG signals. Int J Psychophysiology 20: 161–175

    Article  CAS  Google Scholar 

  • Jackson JD (1998) Classical Electrodynamics, 3rd Ed., Wiley, New York

    Google Scholar 

  • Kelhä VO, Pukki JM, Peltonen RS, Penttinen AJ, Ilmoniemi RJ, Heino JJ (1982) Design, construction and performance of a large-volume magnetic shield. IEEE Trans Magn 18: 260–270

    Article  Google Scholar 

  • Kuriki S, Murase M, Takeeuchi F (1989) Locating accuracy of a current source of neuromagnetic responses: simulation study for a single current dipole in a spherical conductor. EEG clin Neurophysiol 73: 499–506

    Article  CAS  Google Scholar 

  • Lopez da Silva FH, Wieringa HJ, Peters MJ (1991) Source localization of EEG versus MEG: empirical comparison using visually evoked responses and theoretical considerations. Brain Topography, 4: 133–142

    Article  Google Scholar 

  • Mager A (1981) Berlin magnetically shielded room. In Erné SN, Hahlbohm HD, Lübbig H (eds.), Biomagnetism. WdG, Berlin, pp 51–78

    Google Scholar 

  • Marquart DM (1963) An algorithm for least squares-estimation of nonlinear parameters. J Soc Indust Appl Math 11: 431–441

    Article  Google Scholar 

  • Matsuba H, Shintomi K, Yahara A, Irisawa D, Imai K, Yoshida, H, Seike S (1995) Superconducting shield enclosing a human body for biomagnetism measurement. In Baumgartner C, Deecke L, Stroink G, Williamson SJ (eds.) Biomagnetism: Fundamental Research and Clinical Applications. Elsevier Science, IOS Press, Amsterdam, pp 483–489

    Google Scholar 

  • Meijs JWH, Bosch FGC, Peters MJ, Lopes da Silva FH (1987) On the magnetic filed distribution generated by a dipolar current source situated in a realistically shaped compartment model. EEG clin Neurophysiol 66: 286–298

    Article  CAS  Google Scholar 

  • Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from spatiotemporal MEG data. IEEE trans Biomed Eng 39: 541–557

    Article  PubMed  CAS  Google Scholar 

  • Mosher JC, Spencer ME, Leahy RM, Lewis PS (1993) Error bounds for EEG and MEG dipole localization. EEG clin Neurophysiol 86: 303–321

    Article  CAS  Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psycho-Physiol 18: 49–65

    Article  CAS  Google Scholar 

  • Pasquarelli A, Kammrath H, Tenner U and Erné SN (1998a) The new Ulm Magnetic Shielded Room. Book of abstracts BIOMAG98, Sendai, Japan, p 63

    Google Scholar 

  • Pasquarelli A, Tenner U and Erné SN (1998b) Use of an Additional Active Shielding System to enhance the low-frequency performances of a Magnetic Shielded Room. Proceedings of IWK98, Ilmenau, Germany

    Google Scholar 

  • Platzek D, Nowak H (1998) Active Shielding and its Application on MEG-DC Measurements, Book of abstracts BIOMAG98, Sendai, Japan, p 32

    Google Scholar 

  • Press WH, Teulosky SA, Vetteling WT Fannery BP (1992) Numerical recipes in FORTRAN: the art of scientific computing, 2nd ed, Cambridge University Press, Cambridge, pp. 402–406

    Google Scholar 

  • Pruis GW, Gilding BH, Peters MJ (1993) A comparison of different numerical methods for solving the forward problem in EEG and MEG. Physiol Meas 14 Suppl 4A: Al-A9

    Article  Google Scholar 

  • Radich BM, Buckley KM (1995) EEG dipole localization bounds and MAP algorithms for head models with parameter uncertainties. IEEE Trans Biomed Eng 42: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Robinson SE, Rose DF (1992) Current source image estimation by spatially filtered MEG. In: Hoke M, Erné SN, Okada YC, Romani GL (eds) Biomagnetism: Clinical Aspects. Elsevier Science, Amsterdam, New York, pp. 761–765

    Google Scholar 

  • Sata K, Fujimoto S, Yoshida T, Miyahara S, Yoshii K, Kang YM (1998) A helmet-shaped MEG measurement system cooled by a GM/JT Cryocooler. Abstract proceedings BIOMAG98, Sendai, Japan, p 65

    Google Scholar 

  • Scherg M (1990) Fundamentals of dipole source potential analysis. In: Grandori F, Hoke M, Romani GL (eds) Auditory evoked magnetic fields and electric potentials. Advances in Audiology, vol 6, Karger, Basel, pp 40–69

    Google Scholar 

  • Templey N (1992) Spreading depression and related DC phenomena. In: Hoke M, Erné SN, Okada YC, Romani GL (eds) Biomagnetism: Clinical Aspects. Elsevier Science, Amsterdam, New York, pp. 329–335

    Google Scholar 

  • ter Brake HJM, Flokstra J, Jaszczuk W, Stammis R, van Ancum GK, Martinez A, Rogalla H (1991) The UT 19-channel DC SQUID based neuromagnetometer. Clin Phys Physiol Meas 12: 45–50

    Article  PubMed  Google Scholar 

  • Valdes-Sosa P, Marti F, Gracia F, Casanova R (1999 in press) Variable resolution electric-magnetic tomography. In: Aine C, Okada Y, Stroink G, Swithenby S, Wood CC (eds) Advances in Biomagnetism Research: Biomag96. Springer, New York

    Google Scholar 

  • Van Dijk BW, Spekreijse H, Yamazaki T (1993) Equivalent dipole source localization of EEG and evoked potentials: sources of errors or sources with confidence? Brain Topography 5: 355–359

    Article  PubMed  Google Scholar 

  • Vieth J, Kober H, Weise E, Daun A, Moegner A, Friedrich S, Pongratz H (1992) Functional 3D localization of cerebrovascular accidents by magnetoencephalography. Neurol Res, Suppl. 14: 132–134

    CAS  Google Scholar 

  • Weinstock H (ed) (1996) SQUID Sensors: Fundamentals, Fabrication and Applications NATO ASI, Kluwer Academic Pub., Dordrecht, Boston, London, 703 pages

    Google Scholar 

  • Whalen AD, Detection of signal in noise (1971), Academic Press, New York, London

    Google Scholar 

  • Widrow B (1985) Adaptive signal processing. Prentice Hall US

    Google Scholar 

  • Williamson SJ, Kaufmann L (1990) Theory of neuroelectric and neuromagnetic fields. In: Grandori F, Hoke M, Romani GL (eds) Auditory Evoked Magnetic Fields and Electric Potentials. Advances in Audiology, vol 6, Karger, Basel, pp 1–39

    Google Scholar 

  • Yan Y, Nunez PL, Hart RT (1991) Finite element model of the human head: scalp potentials due to dipole sources. Med Biol Eng Comput 29: 475–481

    Article  PubMed  CAS  Google Scholar 

  • Yvert B, Bertrand O, Echallier JF, Pernier J (1996) Improved dipole localization using local mesh refinement of realistic head geometries: an EEG simulations study. EEG clin Neurophysiol 99 79–89

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diekmann, V., Erné, S.N., Becker, W. (1999). Magnetoencephalography. In: Windhorst, U., Johansson, H. (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58552-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58552-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63643-1

  • Online ISBN: 978-3-642-58552-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics