Advertisement

In-vivo Optical Imaging of Cortical Architecture and Dynamics

  • Amiram Grinvald
  • D. Shoham
  • A. Shmuel
  • D. Glaser
  • I. Vanzetta
  • E. Shtoyerman
  • H. Slovin
  • C. Wijnbergen
  • R. Hildesheim
  • A. Arieli

Abstract

A number of new imaging techniques are available to scientists to visualize the functioning brain directly, revealing unprecedented details. These imaging techniques have provided a new level of understanding of the principles underlying cortical development, organization and function. In this chapter we will focus on optical imaging in the living mammalian brain, using two complementary imaging techniques. The first technique is based on intrinsic signals. The second technique is based on voltage-sensitive dyes. Currently, these two optical imaging techniques offer the best spatial and temporal resolution, but also have inherent limitations. We shall provide a few examples of new findings obtained mostly in work done in our laboratory. The focus will be upon the understanding of methodological aspects which in turn should contribute to optimal use of these imaging techniques. General reviews describing earlier work done on simpler preparations have been published elsewhere (Cohen, 1973; Tasaki and Warashina, 1976; Waggoner and Grinvald, 1977; Waggoner, 1979; Salzberg, 1983; Grinvald, 1984; Grinvald et al., 1985; De Weer and Salzberg, 1986; Cohen and Lesher, 1986; Salzberg et al., 1986; Loew, 1987; Orbach, 1987; Blasdel, 1988, 1989; Grinvald et al., 1988; Kamino, 1991; Cinelli and Kauer, 1992; Frostig, 1994).

Keywords

Optical Imaging Optical Signal Local Field Potential Ocular Dominance Intrinsic Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arieli, A., Shoham, D., Hildesheim, R. and Grinvald., A. (1995). Coherent spatio-temporal pattern of on-going activity revealed by real time optical imaging coupled with single unit recording in the cat visual cortex. J. Neurophysiol., 73, 2072–2093PubMedGoogle Scholar
  2. Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). Dynamics of on-going activity: Expla-nation of the large in variability in evoked cortical responses. Science, 273, 1868–1871.PubMedCrossRefGoogle Scholar
  3. Arieli, A., et al., (1996). The impact of on going cortical activity on evoked potential and behavio-ral responses in the awake behaving monkey. NS abstract.Google Scholar
  4. Bakin, J.S., Kwon, M.C., Masino, S.A., Weinberger, N.M., Frostig, R.D. (1993). Tonotopic organization of guinea pig auditory cortex demonstrated by intrinsic signal optical imaging through the skull, Neurosci. Abstr., 582 (11).Google Scholar
  5. Bartfeld, E., and Grinvald, A. (1992). Relationships between orientation preference pinwheels, cytochrome oxidase blobs and ocular dominance columns in primate striate cortex. Proc. Natl. Acad. Sci. USA 89, 11905–11909.PubMedCrossRefGoogle Scholar
  6. Beeler, T.J., Farmen, R.H., and Martonosi, A.N. (1981). The mechanism of voltage-sensitive dye responses on saroplasmic reticulum. J. Member. Biol. 62: 113–137.CrossRefGoogle Scholar
  7. Blasdel GG (1989). Visualization of neuronal activity in monkey striate cortex. Annu Rev Physiol 51: 561–581.PubMedCrossRefGoogle Scholar
  8. Blasdel GG., Salama G. (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321: 579–585.PubMedCrossRefGoogle Scholar
  9. Blasdel, G. G. (1988). in: “Sensory Processing in the mammalian brain: Neural substrates 0000 Experimental strategies”. Ed., Lund, J.S. Oxford Univ. Press pp 242–268.Google Scholar
  10. Blasdel, G.G. (1989). Topography of visual function as shown with voltage sensitive dyes. In: Sensory systems in the mammalian brain, J.S. Lund, ed., pp. 242–268, Oxford University Press, New York.Google Scholar
  11. Blasdel, G.G. (1992a). Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex, J. Neurosci., 12, 3115–3138.PubMedGoogle Scholar
  12. Blasdel, G.G. (1992b). Orientation selectivity, preference, and continuity in monkey striate cortex, J. Neurosci., 12, 3139–3161.PubMedGoogle Scholar
  13. Bonhoeffer, T., and Grinvald, A. (1991). Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns, Nature, 353, 429–431.PubMedCrossRefGoogle Scholar
  14. Bonhoeffer, T., and Grinvald, A. (1993). The layout of Iso-orientation domains in area 18 of cat vis- ual cortex: Optical Imaging reveals pinwheel-like organization, J. Neurosci., 13, 4157–4180.PubMedGoogle Scholar
  15. Bonhoeffer, T., and Grinvald, A. (1996). Optical Imaging based on Intrinsic Signals. The Methodology. in Brain Mapping. The Methods. A. Toga and J. Mazziotta (eds ). Academic Press.Google Scholar
  16. Bonhoeffer, T., Goedecke, I. (1994). Kittens with alternating monocular experience from birth develop identical cortical orientation preference maps for left and right eye, Soc. Neurosci. Abstr., 20, 98 (3), 215.Google Scholar
  17. Bonhoeffer, T., Kim, A., Malonek, D., Shoham, D., and Grinvald, A. (1995). The functional architecture of cat area 17. Eur. J. Neurosci., 7, 1973–1988.CrossRefGoogle Scholar
  18. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J-Neurosci. Mar 15, 17 (6), 2112–27.Google Scholar
  19. Bullen, A.,and Saggau, P. (1998). Indicators and optical configuration for simultaneous high resolution recording of membrane potential and intracellular calcium using laser scanning microscopy. Pflugers archiv european journal of physiology. 436, 788–796.CrossRefGoogle Scholar
  20. Cannestra, AR, Black, KL., Martin. NA., Cloughesy, T., Burton, JS., Rubinstein, E., woods, RP.,and Toga, AW. (1998). Topographical and temporal specificity of humann intraoperative optical intrinsic signals. Neurosci., 9, 2557–2563.Google Scholar
  21. Cacciatore, TW., Brodfuehrer, PD.,, Gozalas JE Tsien, RY, Kristan, WB and Kleinfeld D. (1998). Neurons that are active in phase with swimming in leech, and their connectivity are revealed by optical techniques. Neurosci. Abs. 24, 1890.Google Scholar
  22. Chance, B., Cohen, P., Jobsis, F., Schoener, B. (1962). Intracellular oxidation-reduction states in vivo. Science, 137, 499–508.PubMedCrossRefGoogle Scholar
  23. Chance, B., Kang, K., He, L., Weng, J., Sevick, E. (1993b). Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions, PNAS 90 (8), 3423–3427.PubMedCrossRefGoogle Scholar
  24. Chance, B., Zhuang, L., Unah, C., Alter, C., Lipton, L. (1993a). Cognition-activated low-frequency modulation of light absorption in human brain, PNAS 90 (8), 3770–3774.PubMedCrossRefGoogle Scholar
  25. Chapman, B., and Bonhoeffer, T. (1998). Overrepresentation of horizontal and vertical orientation preference in developing ferret area-17. Proceedings of the national academy of science of the United States of America, 95, 2609–2614.CrossRefGoogle Scholar
  26. Chapman, B., Bonhoeffer, T. (1994). Chronic optical imaging of the development of orientation domains in ferret area 17, Soc. Neurosci. Abstr., 20, 98 (2), 214.Google Scholar
  27. Cinelli, A.R., and Kauer, J.S. (1992). Voltage sensitive dyes and functional-activity in the olfactory pathway. Annu. Rev. Neurosci., 15, 321–352.PubMedCrossRefGoogle Scholar
  28. Cinelli, A.R., and Kauer, J.S. (1995) Salamender olfactory-bulb neuronal-activity observed by video-rate, voltage sensitive dyes imaging. 2. Spatial and temporal properties of responses evoked by electrical stimulation. J. Neurophys., 73, 2033–2052.Google Scholar
  29. Cinelli, A.R., Neff, S.R., and Kauer, J.S. (1995) Salamender olfactory-bulb neuronal-activity observed by video-rate, voltage sensitive dyes imaging. 1. Caracterization of the recording system. J. Neurophys., 73, 2017–2032.Google Scholar
  30. Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S., and Wang, C. H. (1974). Changes in axon fluorescenceduring activity: Molecular probes of membrane potential. J. Membrane Biol. 19: 1–36.CrossRefGoogle Scholar
  31. Cohen, L.B. (1973). Changes in neuron structure during action potential propagation and synaptic transmission, Physiol. Rev., 53, 373–418.PubMedGoogle Scholar
  32. Cohen, L.B., and Lesher, S. (1986). Optical monitoring of membrane pkential: methods of multisite optical measurement. Soc. Gen. Physiol., Ser. 40: 71–99Google Scholar
  33. Cohen, L.B., and Orbach, H.S. (1983). Simultaneous monitoring of activity of many neurons in buccal ganglia of pleurobranchaea and aplysia. Soc. Neurosci.Abstr. 9: 913.Google Scholar
  34. Cohen, L.B., Keynes, R.D., Hille, B. (1968). Light scattering and birefringence changes during nerve activity, Nature, 218, 438–441.PubMedCrossRefGoogle Scholar
  35. Cohen, L.B., Landowne, D., Shrivastav, B.B., and Ritchie, J.M., (1970). Changes in fluorescence of squid axons during activity. Biol. Bull. Woods Hole 139: 418–419.Google Scholar
  36. Cohen, L.B., Slazberg, B.M., Grinvald, A. (1978) Optical methods for monitoring neurons activity. Ann. Rev. of Neurosci., 1, 171–182.CrossRefGoogle Scholar
  37. Coppola, DM., White,LE., Fitzpatrick, D., and Purves, D. (1998). Unequal representation of cardinal and oblique in ferret cortex. Proceedings of the national academy of science of the United States of America, 95, 2621–2623.Google Scholar
  38. Crair, M.C., Gillespie, D.G., and Stryker, M.P. (1998) The role of visual experience in the development of columns in cat visual cortex. Science, 279, 566–570PubMedCrossRefGoogle Scholar
  39. Crair, M.C., Ruthazer, E.S., Gillespie, D.C. (1997). Stryker-MP Ocular, dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J-Neurophysiol., Jun, 77 (6)Google Scholar
  40. Crair, M.C., Ruthazer, E.S., Gillespie, D.C. (1997). Stryker-MP Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron. Aug, 19 (2), 307–18CrossRefGoogle Scholar
  41. Das, A., and Gilbert, C.D. (1995). Long-range horizontal connections and their role in cortical reor-ganization revealed by optical recording of cat primary visual cortex Nature, 375 (6534), 780–4.Google Scholar
  42. Das, A., and Gilbert, C.D. (1997). Distortions ofvisuotopic map match orientation singularities inprimary visual cortex. Nature, 387, 594–8PubMedCrossRefGoogle Scholar
  43. Davila, H.V., Cohen, L.B., Salzberg, B.M., and Shrivastav, B.B., (1974). Changes in ANS and TNS fluorescence in giant axons from loligo. J. Member. Bio1. 15: 29–46.CrossRefGoogle Scholar
  44. De Weer, P. and B.M. Salzberg (eds) (1986). Optical methods in cell physiology., Soc. Gen. Physiol. Ser. Vol. 40 John Wiley and Sons inc. New York.Google Scholar
  45. Denk, W., Strickler, J.H., and Webb, W.W. (1990) Two-photon laser scanning fluorescence microscopy. Science, 248: 73–76PubMedCrossRefGoogle Scholar
  46. Egger, M.D., and M. Petran. (1967). New reflected light microscope for viewing unstained brain and ganglion cells. Science, 157: 305–307.PubMedCrossRefGoogle Scholar
  47. Ehrenberg, B., and Berezin, Y. (1984). Surface potential on purple membranes and its sidedness studied by resonance ramam dye prob. Biophys. J. 45: 663–670.PubMedCrossRefGoogle Scholar
  48. Eisenbach, M., Margolon, Y., Ciobotariu, A., and Rottenberg, H. (1984). Distinction between changes in membrane potential and surface charge upon chemotactic stirr ulation of escherichia coli. Biophys. J. 45: 463–467.PubMedCrossRefGoogle Scholar
  49. Everson, R.M., Prashanth, A.K., Gabbay, M., Knight, B.W., Sirovich, L., Kaplan, E. (1998). Repre-sentation of spatial frequency and orientation in the visual cortex. PNAS 95 (14), 8334–8338.PubMedCrossRefGoogle Scholar
  50. Fox, P.T., Mintun, M.A., Raichle, M.E., Miezin, F.M., Allman, J.M., aiâd van Essen, D.C. (1986). Mapping human visual cortex with positron emission tomography. Nature, 323, 806–809.PubMedCrossRefGoogle Scholar
  51. Frostig, R.D. (1994). What does in vivi optical imaging tell us about the primary visual cortex in primates. In Cerebral Cortex, 10, 331–358, Eds. Peters A, and Rockland K.Google Scholar
  52. Frostig, R.D., Lieke, E.E., Ts’o, D.Y., and Grinvald, A. (1990). Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. USA 87, 6082–6086.PubMedCrossRefGoogle Scholar
  53. Frostig, R.D., Masino, S.A., Kwon, M.C. (1994). Characterization of functional whisker representation in rat barrel cortex: Optical imaging of intrinsic signals vs. single-unit recordings, Neurosci. Abstr., 566 (8).Google Scholar
  54. Ghose, G.M., Roe, A.W., Ts’o, D.Y. (1994). Features of functional organization within primate V4, Neurosci. Abstr., 350 (10).Google Scholar
  55. Gilbert, C.D., Wiesel, T.N. (1983) Clustered intrinsic connections in cet visual cortex.J Neurosci 3: 1116–1133.Google Scholar
  56. Glaser, D.E., Hildesheim, R., Shoham, D., and Grinvald, A. (1988). Optical imaging with new voltage sensitive dues reveals that sudden luminance changes delay the onset of orientation tuning in cat visual cortex. Neurosci. Abs., 24: 10. 3Google Scholar
  57. Glaser,D.E., Shoham,D.,and Grinvald,A. (1998). Sudden luminance changes delay the onset of cortical shape processing. Neurosci.Lett.,Suppl 51(S15).Google Scholar
  58. Gochin, P.M., Bedenbaugh, P., Gelfand, J.J., Gross, C.G., Gerstein, G.L. (1992). Intrinsic signal op-tical imaging in the forepaw area of rat somatosensory cortex, PNAS 89 (17), 8381–8383.PubMedCrossRefGoogle Scholar
  59. Gonzalez, JE. and Tsien, RY (1995). Voltage Sensing by fluorescence resonance energy transfer in single cells. Biophys. J. 69: 1272–1280.Google Scholar
  60. Gonzalez, JE. and Tsien, RY (1997). Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chem. Biol. 4: 269–277.PubMedCrossRefGoogle Scholar
  61. Gratton, G. (1997). Attention and probability effects in the human occipital cortex: an optical imaging study. Neuroreport, 8 (7), 1749–53PubMedCrossRefGoogle Scholar
  62. Gratton, G., Corballis, P.M., Cho, E., Fabiani, M., Hood, D.C. (1995). Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation. Psychophysiology, 32 (5), 505–9Google Scholar
  63. Gratton, G., Fabiani, M., Corballis, PM., Gratton, E. (1997). Noninvasive detection of fast signals from the cortex using frequency-domain optical methods. Ann-N-Y-Acad-Sci., 820, 286–98PubMedCrossRefGoogle Scholar
  64. Grinvald,A, Fine, A., Farber, I.C., Hildesheim, R. (1983) Fluorescence monitoring of electrical re-sponses from small neurons and their processes. Biophys. J. 42: 195–198.CrossRefGoogle Scholar
  65. Grinvald, A. (1984). Real time optical imaging of neuronal activity: from single growth cones to the intact brain. Trends in Neurosci., 7, 143–150.Google Scholar
  66. Grinvald, A. (1985). Real-time optical mapping of neuronal activity: from single growcones to the intact mammalian brain. Annu. Rev. Neurosci., 8, 263–305.PubMedCrossRefGoogle Scholar
  67. Grinvald, A., and Segal, M., (1983). Optical monitoring of electrical activity; detection of spatiotemporal patterns of activity in hippocampal slices by voltage-sensitive probes. In Brain Slices, ed. R. Dingledine. New York: Plenum Press, pp. 227–261.Google Scholar
  68. Grinvald, A., Anglister, L., Freeman, J.A., Hildesheim, R., and Manker, A. (1984). Real time optical imaging of naturally evoked electrical activity in the intact frog brain. Nature, 308, 848–850PubMedCrossRefGoogle Scholar
  69. Grinvald, A., C.D. Gilbert, R. Hildesheim, E. Lieke., and T.N. Wiesel. (1985). Real time optical mapping of neuronal activity in the mammalian visual cortex in vitro and in vivo. Soc. Neurosci. Abstr., 11: 8.Google Scholar
  70. Grinvald, A., Cohen, L.B., Lesher, S., and Boyle, M.B., (1981). Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia, using a 124 element “Photodiode” array. J. Neurophysiol., 45, 829–840PubMedGoogle Scholar
  71. Grinvald, A., Frostig, R.D., Lieke, E.E., Hildesheim, R. (1988). Optical imaging of neuronal activity. Physiol Rev., 68, 1285–1366.PubMedGoogle Scholar
  72. Grinvald, A., Frostig, R.D., Siegel, R.M., and Bartfeld, E. (1991). High resolution optical imaging of neuronal activity in awake monkey, PNAS, 88, 11559–11563.PubMedCrossRefGoogle Scholar
  73. Grinvald, A., Hildesheim, R., Farber, I.C., and Anglister, L. (1982b). Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys. J., 39, 301–308PubMedCrossRefGoogle Scholar
  74. Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, C.D., and Wiesel, T.N. (1986a). Functional architecture of cortex revealed by optical imaging of intrinsic signals, Nature, 324, 361–364.PubMedCrossRefGoogle Scholar
  75. Grinvald, A., Lieke, E.E., Frostig, R.D., Hildesheim, R. (1994), Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex, J. Neurosci., 14 (5), 2545–2568.PubMedGoogle Scholar
  76. Grinvald, A., Manker, A., and Segal, M. (1982a). Visualization of the spread of electrical activity in rat hippocampal slices by voltage sensitive optical probes. J. Physiol., 333, 269–291PubMedGoogle Scholar
  77. Grinvald, A., Salzberg, B.M., and Cohen, L.B. (1977). Simultaneous recordings from several neurons in an invertebrate central nervous system. Nature, 268, 140–142PubMedCrossRefGoogle Scholar
  78. Grinvald, A., Salzberg, B.M., Lev-Ram, V., and Hildesheim, R. (1987). Optical recording of synaptic potentials from processes of single neurons using intrcellular potentiometric dys. Biophys. J. 51: 643–651.PubMedCrossRefGoogle Scholar
  79. Grinvald, A., Segal, M., kuhnt, U., Hildesheim, R., Manker, A., Anglister, L., and Freeman, J.A. (1986) Real-time optical mapping of neuronal activity in vertebrate CNS in vitro and in vivo. Soc. Gen. Physiol. Ser. 40: 165–197.PubMedGoogle Scholar
  80. Gupta, R.G., Salzberg, B.M., Grinvald, A., Cohen, L.B., Kamino, K., Boyle, M.B., Waggoner, A.S., Wang, C.H. (1981). Improvements in optical methods for measuring rapid changes in membrane potential. J. Mem. Biol. 58, 123–137.CrossRefGoogle Scholar
  81. Haglund, M.M., Ojemann, G A, and Hochman, D.W. (1992). Optical imaging of epileptiform and functional activity in human cerebral cortex, Nature, 358, 668–671.PubMedCrossRefGoogle Scholar
  82. Harrison, VH., Harel, n., Kakigi, A., Raveh, E., and Mount, RJ. (1998). Optical imaging of intrinsic signals in chinchilla auditory cortex. Audiol Neurootal, 3, 214–223.CrossRefGoogle Scholar
  83. Hess, A., Scheich, H. (1994). Tonotopic organization of auditory cortical fields of the Mongolian Gerbil 2DG labeling and optical recording of intrinsic signals, Neurosci. Abstr., 141 (5).Google Scholar
  84. Hill, D.K., and Keynes, R.D. (1949). Opacity changes in stimulated nerve, J. Physiol., 108, 278–281.Google Scholar
  85. Hirota, A., Sato, K., Momosesato, Y., Sakai, T., and Kamino, K. (1995). A new simultaneous 1020 site optical recording system for monitoring neuronal activity using voltage sensitive dyes. J.Neurosci. Methods. 56, 187–194.PubMedCrossRefGoogle Scholar
  86. Horikawa, J., Hosokawa, Y., Nasu, M., and Taniguchi, I., (1997). Opti01 study of spatiotemporal inhibition evoked by 2 tone sequence in the guinea pig auditory cortex. J. of comparative physio.A sensory neural and behavioral physiology. 181, 677–684.CrossRefGoogle Scholar
  87. Hoshi, Y., Tamura, M. (1993). Dynamic multichannel near-infrared optical imaging of human brain activity, J. Appl. Physiol., 75, 1842–1846.PubMedGoogle Scholar
  88. Hosokawa,Y., Horikawa, J., Nasu, M., and Taniguchi, I. (1997). Real time imaging of neural activity during binaural interaction in the guinea pig auditory cortex. J. of comparative physio.A sensory neural and behavioral physiology. 181, 607–614.Google Scholar
  89. Hubel, D.H. and T.N. Wiesel. (1965). Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J. Neurophysiol. 28: 229–289.PubMedGoogle Scholar
  90. Hubel, D.H., and Wiesel, T.N. (1962). Receptive fields, binocular interactions and functional architecture in the cat’s visual cortex. J. Physiol., 160, 106–154.PubMedGoogle Scholar
  91. Hubener, M., Shoham, D., Grinvald, A., and Bonhoeffer, T. (1997). Spatial relationships among three columnar systems in cat area 17. J. Neurosci., 17, 9270–9284.PubMedGoogle Scholar
  92. Ichikawa, M., Tominaga, T., Tominaga, Y., yamada, H., Yamamato, Y. and Matsomoto, G. (1998). Imaging of synaptic excitation at high special and temporal resolution at high temporal reso-lution using va novel CCD system in rat brain slices. Neurosci. Abs 24, 1812.Google Scholar
  93. Iijima, T., Matosomoto, G., Kisokoro, Y. (1992). Synaptic activation of rat adrenal-medula examined with a lrage photodiode array in combination with voltage sensitive dyes. Neurocscience 51, 211–219.CrossRefGoogle Scholar
  94. Inase, M., Iijima, T., Takashima, I., Takahashi, M., Shinoda, H., Hirose, H., Niisato, K.,Tsukada, K. (1998). Optical recording of the motor cortical activity during reafhing movement in the behaving monkey. Soc. Neurosci.Abstr., Vol. 24, (404).Google Scholar
  95. Jobsis, F.F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science, 198, 1264–1266.PubMedCrossRefGoogle Scholar
  96. Jobsis, F.F., Keizer, J.H., LaManna, J.C., and Rosental, M.J. (1977). Reflectance spectrophotometry of cytochrome aa3 in vivo. J. Appl. Physiol.: Respirat. Environ. Exerlcise Physiol., 43: 858–872.Google Scholar
  97. Jobsis, F.F., Keizer, J.H., LaManna, J.C., Rosental, M.J. (1977). Reflectance spectrophotometry of cytochrome aa3 in vivo. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol., 43, 858–872.Google Scholar
  98. Kamino, K. (1991). Optical approaches to ontogeny of electrical activity and related functional-organization during early heart developnment. Phys.Rev., 71, 53–91.Google Scholar
  99. Kato, T., Kamei, A., Takashima, S., Ozaki, T. (1993). Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J. Cereb. Blood Flow 0000 Me-tab., 13, 516–520.CrossRefGoogle Scholar
  100. Kauer, J.S. (1988). Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature, 331, 166–168.PubMedCrossRefGoogle Scholar
  101. Kauer,J.S., Senseman, D.M., Cohen, M.A. (1987). Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Res 225:255–61.Google Scholar
  102. Kelin, D. (1925). On cytochrome, a respiratory pigment, common to inimals, yeast, and higher plants. Proc. R. Soc. B, 98, 312–339CrossRefGoogle Scholar
  103. Keller,A., Yagodin, S., Aroniadouanderjaska, V., Zimmer, LA., Ennis, ll., Sheppard,NF., and Shipley MT. Functional organization of rat olfactory bulb glomeruli revealed by optical imaging. J. Neurosci., 18, 2602–2612.Google Scholar
  104. Kenet, T., Arieli, A., Grinvald, A., and Tsodyks, M. (1997). Cortical population activity predicts both spontaneous and evoked single neuron firing rates. Neurosci. Jett. S48, p27Google Scholar
  105. Kenet, T.,Arieli, A., Grinvald,A., Shoham, D., Pawelzik, K., and Tsodyks, M. (1998). Spontaneous and evoked firing of single cortical neurons are predicted by population activity. Soc. Neurosci.Abstr., Vol. 24, (1138).Google Scholar
  106. Kety, S.S., Landau, W.M., Freygang, W.H., Rowland, L.P., Sokoloff, L. (1955). Estimation of regional circulation in the brain by uptake of an inert gas, American Physiological Society Abstracts: 85.Google Scholar
  107. Kim, D.S., Bonhoeffer, T. (1994). Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex, Nature, 370, 370–372.PubMedCrossRefGoogle Scholar
  108. Kisvarday, Z.F., Kim, D.S., Eysel, U.T., Bonhoeffer, T. (1994). Relationship between lateral inhibitory connections and the topography of the orientation map in cat visual cortex, Europ. J. Neurosci., 6, 1619–1632.CrossRefGoogle Scholar
  109. Konnerth, A., and Orkand, R.K. (1986). Voltage sensitive dyes measurpotential changes in axons and glia of frog optic nerve. Neuroscience Lett., 66, 49–54.CrossRefGoogle Scholar
  110. Lamanna, J.C., Pikarsky, S.N., Sick, T.J., and Rosenthhal, M., (1985) A rapid-scanning spectropho- tometer designed for biological tissues in vitro or in vivo. Anal. Biochem. 144: 483–493.PubMedCrossRefGoogle Scholar
  111. Lev-Ram R. and A. Grinvald. K+ and Cat+ dependent communication between myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes. Proc. Natl. Acad. Sci. USA, 83, 6651–6655, 1986PubMedCrossRefGoogle Scholar
  112. Lassen, N.A., Ingvar, D.H. (1961). The blood flow of the cerebral cortex determined by radioactive krypton, Experimentia Basel, 17, 42–43CrossRefGoogle Scholar
  113. Lieke, E.E., Frostig, R.D., Arieli, A., Ts’o, D.Y., Hildesheim, R., Grinvald, A. (1989). Optical imaging of cortical activity; Real-time imaging using extrinsic dye signals and high resolution imaging based on slow intrinsic signals. Annu Rev of Physiol 51: 543–559.CrossRefGoogle Scholar
  114. Lieke, E.E., Frostig, R.D., Ratzlaff, E.H., Grinvald, A. (1988). Center/surround inhibitory interaction in macaque V1 revealed by real-time optical imaging. Soc Neurosci Abstr 14: 1122.Google Scholar
  115. Loew, L. M., Cohen, L. B., Salzberg, B. M., Obaid, A. L., and Bezanilla, F. (1985). Charge shift probes of membrane potential. Characterization of aminostyrylpyridinum dyes on the squid giant axon. Biophys J. 47: 71–77.PubMedCrossRefGoogle Scholar
  116. Loew, L.M. (1987). Optical measurement of electrical activity., CRC Press Inc., Boca RatonGoogle Scholar
  117. Loew, L.M., and Simpson, L.L. (1981). Charge shift probes of membrane potential. Biophys. J., 34: 353–363.PubMedCrossRefGoogle Scholar
  118. Loew, L.M., Bonneville, G.W., and Surow, J. (1978). Charge shift probes of membrane potential theory. Biol. Chemistry. 17: 4065–4071.Google Scholar
  119. Loew, L.M., Scully, S., Simpson, L., and Waggoner, A.S., (1979). Evidence for a charge shift electro-chromic mechanism in a probe of membrane potential. Nature Lond. 281: 497–499.PubMedCrossRefGoogle Scholar
  120. MacVicar, B.A., Hochman, D. (1991). Imaging of synaptically evoked intrinsic optical signals in hippocampal slices. J. Neurosci., 11, 1458–1469.Google Scholar
  121. MacVicar, B.A., Hochman, D., LeBlanc, F.E., Watson, T.W. (1990). Stimulation evoked changes in intrinsic optical signals in the human brain. Soc. Neurosci. Abstr., 16, 309.Google Scholar
  122. Malach, R., Amir, Y., Harel, M., and Grinvald, A. (1993). Novel aspects of columnar organization are revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl. Acad. Sci. USA 90, 10469–10473.PubMedCrossRefGoogle Scholar
  123. Malach, R., Amir, Y., Harel, M., Grinvald, A. (1993). Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. PNAS 90, 10469–10473.PubMedCrossRefGoogle Scholar
  124. Malach, R., Schirman, T.D., Harel, M., Tootell, R.B.H., and Malonek, D. (1997) Organization of intrinsic connections in owl monkey area MT. Cerebral Cortex, 7, 386–393.PubMedCrossRefGoogle Scholar
  125. Malach, R., Tootell, R.B.H., and Malonek, D. (1994) Relationship between orientation Domains, Cytochrome Oxidase Stipes and intrinsic horizontal connections in Squirrel monkey area V2. Cerebral Cortex, 4, 151–165.PubMedCrossRefGoogle Scholar
  126. Malach, R., Tootell, R.B.H., and Malonek, D. (1994). Relationship between orientation Domains, cytochrome oxidase stripes and intrinsic horizontal connections in squirrel monkey area V2.Google Scholar
  127. Malonek, D., Dirnagl, U., Lindauer, U., Yamada, K., Kanno, I, and Grinvald, A. (1997). Vascular imprints of neuronal activity. Relationships between dynamics of cortical blood flow, oxygenation and volume changes following sensory stimulation., Proc. Natl Acad. Sci. USA, 94,4826–14831Google Scholar
  128. Malonek, D., Grinvald, A. (1996). The imaging spectroscope reveals the interaction between electrical activity and cortical microcirculation; implication for functional brain imaging. Science, 272, 551–554.PubMedCrossRefGoogle Scholar
  129. Malonek, D., Shoham, D., Ratzlaff, E., and A. Grinvald (1990) In vivo three dimensional optical imaging of functional architecture in primate visual cortex. Neurosci. Abstr. 16, 292.Google Scholar
  130. Malonek, D., Tootell, R.B.H., Grinvald, A. (1994). Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT. Proc. R. Soc. Lond. B, 258, 109–119.CrossRefGoogle Scholar
  131. Masino, S.A., Kwon, M.C., Dory, Y., Frostig, R.D. (1993). Structure-function relationships examined in rat barrel cortex using intrinsic signal optical imaging through the skull, Neurosci. Abstr., 702 (6).Google Scholar
  132. Mayevsky, A., and Chance, B. (1982). Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science, 217, 537–540PubMedCrossRefGoogle Scholar
  133. Mayhew, J., Hu, DW., Zheng, Y., Askew, S., Hou, YQ.,Berwick,J., Coffey, PJ., and Brown, N. (1998). An evaluation of linear model analysis techniques for processing images of microcirculation activity. Neuroimage, 7, 49–71.Google Scholar
  134. Mc-Loughlin, N.P., and Blasdel, G.G. (1998). Wavelength dependent differences between optically determined functional maps from macaqe striate cortex. Neuroimage. 7, 326–36.PubMedCrossRefGoogle Scholar
  135. Menon RS., Luknowsky, DC. And Gati, JS (1998). Mental chronometry using latency resolved functional MRI. Proc. Natl./Acad. Sci. USA. 95, 10902–10907.CrossRefGoogle Scholar
  136. Millikan, G.A. (1937). Experiments on muscle hemoglobin in vivo; the instantaneous measurement of muscle metabolism. Proc. R. Soc. B, 123, 218–241CrossRefGoogle Scholar
  137. Miyawaki-A; Llopis-J; Heim-R; McCaffery-JM; Adams-JA; Ikura-M; Tsien-RY (1997) Fluorescent indicators for Cat+ based on green fluorescent proteins and calmodulin. Nature, 388, 834–5CrossRefGoogle Scholar
  138. Mountcastle, V.B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol., 20, 408–434.Google Scholar
  139. Newsome, W.T., Britten, K.H., Movshon, J.A. (1989). Neuronal correlates of a perceptual decision, Nature, 341, 52–54.PubMedCrossRefGoogle Scholar
  140. Obermayer, K., and Blasdel, G.G. (1993) Geometry of orientation and ocular dimonance columns in primate striate cortex. J. Neuroscie., 13, 4114–4129.Google Scholar
  141. Ogawa, S., Lee, T.M., Kay, A.R., (1990b). Brain magnetic resonance imaging with contrast dependent on blood oxygenation, PNAS 87, 9868–9872.PubMedCrossRefGoogle Scholar
  142. Ogawa, S., Lee, T.M., Nayak, AS. (1990a). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields, Magn. Reson. Med., 14, 68–78.CrossRefGoogle Scholar
  143. Orbach, H.S. (1987). Monitoring electrical activity in rat cerebral cortex. In Optical measurement of electrical activity,. ed. L.M. Loew, CRC Press, Boca RatonGoogle Scholar
  144. Orbach, H.S. (1988). Monitoring electrical activity in rat cerebal cortex. In: Spectroscopic Membrane Probes, edited by L. M. Loew. Boca Raton, FL: CRC, Vol III, p. 115–136.Google Scholar
  145. Orbach, H.S., and Cohen, L.B. (1983)..Optical monitoring of activity from many areas of the in vitro and in vivo salamader olfactory bulb:a new method for studying functional organization in the vertebrate central nervous system. J. Neurosci., 3, 2251–2262Google Scholar
  146. Orbach, H.S., Cohen, L.B., and Grinvald, A. (1985). Optical mapping of electrical activity in rat somatosensory and visual cortex. J. Neurosci., 5, 1886–1895PubMedGoogle Scholar
  147. Pikarsky, S.M., Lamanna, J.C., Sick, T.J., and Rosenthal, M. (1985). A computer-assisted rapidscannig spectrophotometer with applications to tissues in vitro and in vivo. Comput. Biomed. Res. 18: 408–421.PubMedCrossRefGoogle Scholar
  148. Raichle, M.E., Martin, W.R.W., Herscovitz, P., Minton, M.A., Markham, J.J. (1983). Brain blood flow measured with intravenous H2(15)0. II. Implementation and validation, J. Nucl. Med., 24 (9), 790–798.PubMedGoogle Scholar
  149. Ratzlaff, E.H., and Grinvald, A. (1991). A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J. Neurosci. Methods 36: 127–137.Google Scholar
  150. Rector, DM., Poe, GR., Redgrave, P., and Harper, RM. (1997). CCD video camera for high sensitiv-ity light measurements in freely behaving animals full source. J. of Neuro. Metho., 78, 85–91.CrossRefGoogle Scholar
  151. Rigler, R., Rable, C.R., and Jovin, T.M. (1974). A temperature jump apparatus for fluorescence measurements.Rev. Sci. Instrum. 45: 581–587.Google Scholar
  152. Roker, C, Heilemann, A, Fromherz, P. (1996) Time-resolved fluorescence of a hemicyanine dye: Dynamics of rotamerism and resolvation. J Phys. Chem. USA. 100: J2172–12177.Google Scholar
  153. Ross, W.N., and Reichardt, L.F. (1979). Species-specific effects on the optical signals of voltage sensitive dyes. J. Membr. Biol., 48, 343–356Google Scholar
  154. Ross, W.N., Salzberg, B.N., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S., Chang, C.H (1977) Changes in absorption, fluorescence, dichroism and birefringence in stained a: optical measurement of membrane potential. J Mem Biol 33: 141–183.Google Scholar
  155. Ross, W.N., Salzberg. BN., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S, Chang, C.H. (1977) Changes in absorption, fluorescence, dichroism and birefringence in stained axons: optical measurement of membrane potential. J Mem Biol 33:141–183. 1CrossRefGoogle Scholar
  156. Roy, C., Sherrington, C. (1890). On the regulation of the blood supply of the brain, J. Physiol., 11, 85–108.PubMedGoogle Scholar
  157. Rumsey, W.L., Vanderkooi, J.M., Wilson, D.F. (1988). Imaging of phosphorescence; A novel method for measuring oxygen distribution in perfused tissue. Science, 2 1: 1649CrossRefGoogle Scholar
  158. Salama, G., and Morad, M. (1976). Merocyanine 540 as an optical prob bf transmembrane electrical activity in the heart. Science Wash. DC. 191: 485–487.CrossRefGoogle Scholar
  159. Salama, G., Lombardi, R., and Elson, J. (1987). Maps of optical action iotentials and NADH Flu- orescence in intact working hearts. AM.J.Physiol. 252 (Heart Circ. Physiol.21): H384–H394.PubMedGoogle Scholar
  160. Salzberg, B.M., (1983). Optical recording of electrical activity in neurons using molecular probes. In Current Methods in Cellular Neurobiology„ eds. J. Barber, and J. McKelvy. New York: John Wiley 0000 Sons, p. 139–187Google Scholar
  161. Salzberg, B.M., Davila, H.V., and Cohen, L.B. (1973) Optical; recording of impulses in individual neurons of an invertebrate central nervous system. Natrure, 246, 508–509.CrossRefGoogle Scholar
  162. Salzberg, B.M., Grinvald, A., Cohen, L.B., Davila, H.V., and Ross, W.N. (1977). Optical recording of neuronal activity in an invertebrate central nervous system; simultaneous recording from several neurons. J. Neurophys., 40, 1281–1291.Google Scholar
  163. Salzberg, B.M., Obaid, A.L., and Gainer, H. (1986). Optical studies of excitation secretion at the vertebrate nerve terminal Soc. Gen Physiol., 40, 133–164.Google Scholar
  164. Salzberg, B.M., Obaid, A.L., and Gainer, H. (1986). Optical studies of excitation secretion at the vertebrate nerve terminal Soc. Gen Physiol, 40, 133–164.Google Scholar
  165. Salzberg, B.M., Obaid, A.L., Senseman, D.M., and Gainer, H. (1983). Optical recording of action potentials from vertebrate nerve terminals using potentiometric probs provide evidence for sodium and calcium components.Nature Lond. 306: 36–39Google Scholar
  166. Salzman, C.D., Britten, K.H., Newsome, W.T. (1990). Cortical microstimulation influences perceptual judgements of motion direction, Nature, 346, 174–177.PubMedCrossRefGoogle Scholar
  167. Salzman, C.D., Murasugi, C.M., Britten, K.H., Newsome, W.T. (1992). Microstimulation in visual area MT: Effects on direction discrimination performance, J. Neurosci., 12, 2331–2355.PubMedGoogle Scholar
  168. Shevelev, IA. (1998). Functional imaging of the brain by infrared radiation (thermoencephalos-copy) Progress in Neurobiology. 56, 269–305.Google Scholar
  169. Shmuel, A., and Grinvald, A. (1996). Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci., 16, 6945–6964.PubMedGoogle Scholar
  170. Shoham,D., Glaser, D., Arieli, A., Hildesheim, R., and Grinvald, A. (1998). Imaging cortical architecture and dynamics at high spatial and temporal resolution with new voltage-sensitive dyes. Neurosci. Lett., Suppl 51 (S38).Google Scholar
  171. Shoham, D., Hubener, M., Grinvald, A., and Bonhoeffer, T. (1997). Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex. Nature, 385, 529533.Google Scholar
  172. Shoham, D., Gottesfeld, Z., and Grinvald, A. (1993). Comparing maps of functional architecture obtained by optical imaging of intrinsic signals to maps and dynamics of cortical activity recorded with voltage sensitive dyes. Neurosci. Abs., 19: 618. 6Google Scholar
  173. Shoham, D., Grinvald, A. (1994). Visualizing the cortical representation of single fingers in primate area S1 using intrinsic signal optical imaging, Abstracts of the Israel Society for Neuroscience 3, 26.Google Scholar
  174. Shoham, D., Ullman, S, and Grinvald, A. (1991). Characterization of dynamic patterns of cortical activity by a small number of principle components. Neurosci. Abs., 17: 431. 8Google Scholar
  175. Shtoyerman, E., Vanzetta, I., Barabash, S., Grinvald, A. (1998). Spatio-temporal characteristics of oxy and deoxy hemoglobin concentration changes in response to visual stimulation in the awake monkey. Soc. Neurosci.Abstr., Vol. 24, (10).Google Scholar
  176. Siegel, M.S., Isacoff, E.Y. (1997) A genetically encoded optical probe of membrane voltage.Neuron., 19, 735–41Google Scholar
  177. Sirovich, L., Everson, R., Kaplan, E., Knight, B.W., Obrien, E., Orbach,D. (1996). Modeling the functional-organization of the visual cortex. Physica D, 96 355–366.Google Scholar
  178. Slovin, H., Arieli, A. and Grinvald, A. (1999) Voltage-sensitive dye imaging in the behaving monkey. Fifth IBRO Congress. Abstr. pp 129.Google Scholar
  179. Sokoloff, L. (1977). Relation between physiological function and energy metabolism in the central nervous system. J. Neurochem., 19, 13–26.CrossRefGoogle Scholar
  180. Sterkin, A., Arieli, A., Ferster, D., Glaser, D.E., Grinvald, A., and Lampl, I. (1998). Real-time optical imaging in cal visual cortex exhibits high similarity to intracllular. Neurosci.Lett.,Suppl 51 (S41)Google Scholar
  181. Stetter, M., Otto, T., Sengpiel, F., Hubener, M.,Bonhoeffer, T., Obermayer, K. (1998). Signal extraction from optical imaging data from cat area 17 by blind separation of sources. Soc.Neurosci.Abstr., Vol. 24, (9).Google Scholar
  182. Swindale, N.V., Matsubara, J.A., and Cynader, M.S. (1987). Surface organization of orientation and direction selectivity in cat area 18. J. Neurosci., 7, 1414–1427.PubMedGoogle Scholar
  183. Tanifuji, M., Yamanaka, A., Sunaba, R., and Toyama, K. (1993). Propagation of excitation in the visual cortex studies by the optical recording. Japanese J. Physiol., 43, 57–59.Google Scholar
  184. Taniguchi, I., Hrikawa, J., Hosokawa, Y., and Nasu, M. (1997). Optical Imaging of cortical activity induced by intracochlear stimulation. Biomed. Resea.Tokyo. 18, 115–124Google Scholar
  185. Tasaki, I., and A. Warashina. (1976). Dye membrane interaction and its changes during nerve excitation. Photochem. Photobiol., 24, 191–207.CrossRefGoogle Scholar
  186. Tasaki, I., Watanabe, A., Sandlin, R., Carnay, L. (1968). Changes in fluorescence, turbidity and birefringence associated with nerve excitation, PNAS 61, 883–888.PubMedCrossRefGoogle Scholar
  187. Toth, T.J., Rao, S.C., Kim, D.S., Somers, D., Sur, M. (1996). Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc.Natl.Acad.Sci.U.S.A, 91: 9869–74CrossRefGoogle Scholar
  188. Toyama K. and Tanifuji M (1991). Seeing ecxcietation propagation in visual cortical slices Biomed. Res., 12, 145–147.Google Scholar
  189. Ts’o, D.Y, Roe, A.W., Shey, J. (1993). Functional connectivity within Vl and V2: Patterns and dynamics, Neurosci. Abstr., 618 (3).Google Scholar
  190. Ts’o, D.Y., Frostig, R.D., Lieke, E., and Grinvald, A. (1990). Functional organization of primate visual cortex revealed by high resolution optical imaging, Science, 24§, 417–420.Google Scholar
  191. Ts’o, D.Y., Gilbert, C.D., Wiesel, T.N. (1991). Orientation selectivity of and interactions between color and disparity subcompartments in area V2 of Macaque monkey, Neurosci. Abstr., 431 (7).Google Scholar
  192. Vanzetta, I., Grinvald, A. (1998). Phosphorescence decay measurements in cat visual cortex show early blood oxygenation level decrease in response to visual stimulation. Neurosci.Lett.,Suppl 51 (S42).Google Scholar
  193. Vnek, N., Ramsden, B.M., Hung, C.P., Goldman-Rakic, P.S., Roe, A.W. (1998). Optical imaging of functional domains in the awake behaving monkey. Soc. Neurosci.Abstr., Vol. 24, (1137).Google Scholar
  194. Vranesic, I., Iijima, T., Ichikawa, M., Matsumoto, G., Knopfell, T. (l994)’ Signal transmission in the parallel fiber Purkenje-cell system visualized by high resolution imaging. Proc. Natl. Sacad. Sci. USA. 91, 13014–134017.Google Scholar
  195. Waggoner, A.S. (1979). Dye indicators of membrane potential. Ann. Rev. Biophys. Bioener., 8, 4763Google Scholar
  196. Waggoner, A.S., and Grinvald, A. (1977). Mechanisms of rapid optical changes of potential sensitive dyes. Ann. N.Y. Acad. Sci., 303, 217–242.Google Scholar
  197. Wang,G., Tanaka, K., Tanifuji, M. (1994). Optical imaging of functional organization in Macaque inferotemporal cortex, Neuroscience Abstracts 138 (10), 316.Google Scholar
  198. Wenner, P, Tsau, Y, Cohen, LB, O’donovan MJ and Dan, Y. (1996) Voltage-sensitive dye recording using retrogradely transported dye in the chicken spinal cord: Staining and signal characteristics. J. Neurosci. Methods 70, 111–120.PubMedCrossRefGoogle Scholar
  199. William, H.B., Zhang,Y., Schofield, B., Fitzpatrick, D. (1997). Orientation Selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci., 15, 2112–2127.Google Scholar
  200. Wu, LY., Lam, YW., Falk, CX.,Cohen, LB., Fang, J., L, L., Prechtl, JC., Kleinfeld, D., and Tsau, Y. (1998). Voltage sensitive dyes for monitoring multineuronal activity in the intact central nervous system. Histoch. J. 30, 169–187Google Scholar
  201. Wyatt, J.S., Cope, D., Deply, D.T., Richardson, C.E., Edwards, A.D., Wray, S. (1990). Reynolds EOR. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy, J. Appl.Physiol., 68, 1086–1091.PubMedGoogle Scholar
  202. Wyatt, J.S., Cope, M., Deply, D.T., Wray, S., Reynolds, E.O.R. (1986). Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near-infrared spectrophotometry, Lancet, 2, 1063–1066.PubMedCrossRefGoogle Scholar
  203. Zhang, J., Davidson, RM., Wei, MD., and Loew, LM. (1998). Membrane electric properties by com- bined patch-clamp and flurescence ratio imaging in single neurons. Biophys. J. 74, 48–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Amiram Grinvald
  • D. Shoham
  • A. Shmuel
  • D. Glaser
  • I. Vanzetta
  • E. Shtoyerman
  • H. Slovin
  • C. Wijnbergen
  • R. Hildesheim
  • A. Arieli

There are no affiliations available

Personalised recommendations