Skip to main content

Abstract

Reliability is a relatively new concept, which rounds off the quality control and is linked to the study of quality itself. Simply explained, the reliability is the ability of an item to work properly; it is its feature not to fail during its operation. One may say that the reliability is the operational certainty for a stated time interval. This definition is however imperfect, because although containing the time factor, it does not describe precisely a measured size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. AFCIQ (1983): Données de fiabilité en stockage des composants électroniques

    Google Scholar 

  2. Ambrozy, A. (1982): Electronic Noise. McGraw—Hill, New York

    Google Scholar 

  3. Arsenault, J. E.; Roberts, J. A. (1980): Reliability and maintainability of electronic systems. Computer Science Press

    Google Scholar 

  4. Arsenault, J. E. (1980): Screening. Reliability and maintainability of electronic systems, pp. 304–320. Computer Science Press, Rockville

    Google Scholar 

  5. Båjenesco, T. I. (1975): Quelques aspects de la fiabilité des microcircuits avec enrobage plastique. Bulletin ASE/UCS (Switzerland), vol. 66, no. 16, pp. 880–884

    Google Scholar 

  6. Bàjenesco, T. I.: (1978): Initiation à la fiabilité en électronique moderne. Masson, Paris

    Google Scholar 

  7. Båjenescu, T. I. (1978): Zuverlässigkeit in der Elektronik. Seminar at the University of Berne (Switzerland), November 6

    Google Scholar 

  8. Båjenescu, T. I. (1979): Elektronik und Zuverlässigkeit. Hallwag Verlag, Bern & Stuttgart

    Google Scholar 

  9. Båjenescu, T. I. (1981): Wirtschaftliche Alternativen zu “Bum-in”-Verfahren. Fachsitzungsprogramm Productronica 81, Munich

    Google Scholar 

  10. Båjenescu, T. I. (1981): Grundlagen der Zuverlässigkeit anhand von Bauelemente—zuverlässigkeit. Elektronik Produktion & Prüftechnik, no. of May—September

    Google Scholar 

  11. Båjenescu, T. I. (1981): Qu’est—ce que le “bum—in”? Electronique, no. 11, pp. ELI—EL3

    Google Scholar 

  12. Båjenescu, T. I. (1982): Contrôle d’entrée et fiabilité des composants électroniques. L’Indicateur Industriel no. 1, pp. 17–19

    Google Scholar 

  13. Båjenescu, T. I. (1983): Quelques aspects économiques du “bum-in”. La Revue Polytechnique (Switzerland), no. 1439, pp. 667–669

    Google Scholar 

  14. Båjenescu, T. I. (1983): Pourquoi les tests de déverminage des composants? Electronique, no. 4, pp. EL8–EL11

    Google Scholar 

  15. Båjenescu, T. I. (1984): Relais und Zuverlässigkeit. Aktuelle Technik (Switzerland), no. 1, pp. 17–23

    Google Scholar 

  16. Båjenescu, T. I. (1985): Einige Gedanken über Qualitäts— und Zuverlässigkeitssicherung in der Elektronikindustrie. Aktuelle Technik (Switzerland), no. 3, pp. 17–20

    Google Scholar 

  17. Båjenescu, T. I. (1989): La testabilité: pourquoi et comment. La Revue Polytechnique (Switzerland), no. 1514, p. 884

    Google Scholar 

  18. Båjenescu, T. I. (1992): Quality Assurance and the “Total Quality” concept. Optimum Q no. 2 (April), pp. 10–14

    Google Scholar 

  19. Båjenescu, T. I. (1993): Einige Aspekte der Zuverlässigkeitssicherung in der Elektronik—Industrie. London

    Google Scholar 

  20. Båjenescu, T. I. (1993): Wann kommt der nächste Überschlag? Schweizer Maschinenmarkt no. 40, pp. 74–81

    Google Scholar 

  21. Båjenescu, T. I. (1998): On the spare parts problem. Proceedings of Optim ‘98, Braçov (Romania)

    Google Scholar 

  22. Barlow, R. E.; Prochan, F. (1965): Mathematical theory of reliability. J. Wiley and Sons, Inc., New York

    MATH  Google Scholar 

  23. Bazovsky, I. (1961): Reliability theory and practice. Prentice Hall, Inc.

    Google Scholar 

  24. Beckmann, P. (1968): Elements of applied probability theory. Harcourt, Brace and World, Inc., New York

    Google Scholar 

  25. Bellcore, TR-332 (1995): Reliability prediction procedure for electronic equipment. 4th Edition, Bellcore, Livingston, NJ

    Google Scholar 

  26. Bell Laboratories (1975): EMP engineering and design principles. Bell Telephones

    Google Scholar 

  27. Beneking, H. (1991): Halbleiter—Technologie. Teubner Verlag, Stuttgart

    Google Scholar 

  28. Berger, M. C. (1980): Expérience pratique de déverminage de composants électroniques. Actes du second colloque international sur la fiabilité et la maintainabilité. Perros—GuirecTrégastel, September 8–12

    Google Scholar 

  29. Birolini, A. (1997): Quality and reliability of technical systems (2 edition). Springer—Verlag, Berlin

    Book  MATH  Google Scholar 

  30. Blanks, L. (1992): Reliability procurement & use: from specification to replacement. John Wiley & Sons, Inc.

    Google Scholar 

  31. Blanquart, P. (1978): Intérêt de la normalisation des modèles de composants par un organisme international. Electronica, Munich, November 10

    Google Scholar 

  32. Brombacher, A. C. (1992): Reliability by design: CAE techniques for electronic components and systems. J. Wiley and Sons, Chichester

    Google Scholar 

  33. Cåtuneanu, V. M.; Mihalache, A. N. (1989): Reliability fundamentals. Elsevier, Amsterdam

    Google Scholar 

  34. Christou, A. (1994): Reliability of Gallium Arsenide monolithic microwave integrated circuits. John Wiley & Sons, Inc.

    Google Scholar 

  35. Christou, A. (1994): Integrating reliability into microelectronics manufacturing. John Wiley, Design and Measurement in Electronic Engineering Series

    Google Scholar 

  36. CNET RDF 93 (1993): Recueil de données de fiabilité des composants électroniques. CNET, Lannion; also as British Telecom Reliability Handbook HRD5, and Italtel Reliability Prediction HDBK IRPHB93

    Google Scholar 

  37. Compte, Le, M. (1980): Modes et taux de défaillance des circuits intégrés. Actes du second colloque international sur la fiabilité et la maintainabilité, Perros—Guirec—Trégastel, 8–12 Sept., p. 491

    Google Scholar 

  38. Crosby, P. B. (1971): Qualität kostet weniger. Verlag A. Holz

    Google Scholar 

  39. Danner, F.; Lombardi, J. J. (1971): Setting up a cost-effective screening program for ICs. Electronics, vol. 44 (30 August), pp. 44–47

    Google Scholar 

  40. Dhillon, B. S. (1986): Human reliability. Pergamon, New York

    Google Scholar 

  41. DIN 40039: Ausfallraten Bauelemente

    Google Scholar 

  42. Dorey, P. et al. (1990): Rapid reliability assessment of VLSIC. Plenum Press

    Google Scholar 

  43. Dubi, A. et al. (1995): Monte Carlo modeling of reliability systems. Proceedings of ESREDA EC&GA meeting and seminar, Helsinki, May 16–18

    Google Scholar 

  44. Düll, H. (1976): Zuverlässigkeit und Driftverhalten von Widerständen. Radio Mentor no. 7, pp. 73–79

    Google Scholar 

  45. Ekings, J D (1978): Burn-in forever? Proceedings of the Annual Reliability and Maintainability Symp., pp. 286–293

    Google Scholar 

  46. Feller, W. (1968): An introduction to probability theory and its applications. John Wiley & Sons, Inc., New York

    MATH  Google Scholar 

  47. Fiorescu, R. A. (1986): A new approach to reliabilediction is needed. Quality and Reliability Engineering Internat., vol. 2, pp. 101–106

    Article  Google Scholar 

  48. Friedman, M. A.; Tran, P. (1992): Reliability techniques for combined hardware/ software systems. Proc. Annual Reliability and Maintainability Symp., pp. 290–293

    Google Scholar 

  49. Frost, D. F.; Poole, K. F. (1989): RELIANT: A reliability analysis tool for VLSI interconnects. IEEE Solid-State Circuits, vol. 24, pp. 458–462

    Article  Google Scholar 

  50. Gallace, L. J. (1974): Reliability — an introduction for engineers. RCA ST-6342, Sommerville, N.J.

    Google Scholar 

  51. Goldthwaite, L. R. (1961): Failure-rate study for the log-normal life time model. Proc. Seventh Nat. Symp. on Reliab. and Quality Control in Electronics, Philadelphia, Pa., January

    Google Scholar 

  52. Graf, R. (1974): Electronics data book. D. Van Nostrand, New York

    Google Scholar 

  53. Guillard, A. (1980): Le déverminage de composants: est-ce utile? Bilan d’une expérience. Actes du second Colloque International sur la Fiabilité et la Maintainabilité, PerrosGuirec-Trégastel, September 8–12

    Google Scholar 

  54. Hakim, E. B. (1988): Microelectronic reliability, Tome II. Artech House, London

    Google Scholar 

  55. Hannemann, R. J. et al. (1994): Physical architecture of VLSI systems. John Wiley & Sons, Inc.

    Google Scholar 

  56. Harrison, R.; Ushakov, I. (1994): Handbook of reliability engineering. John Wiley & Sons, Inc.

    MATH  Google Scholar 

  57. Henley, E. J.; Kummamoto, H. (1992): Probabilistic risk assessment. IEEE Press, Piscataway, N. J.

    Google Scholar 

  58. Hernandez, D. et al. (1978): Optimisation coût-fiabilité des composants - l’exemple du lanceur Ariane. Actes du Colloque International sur la Fiabilité et la Maintainabilité, Paris, June 19–23

    Google Scholar 

  59. Hnatek, E. (1973): Epoxy packages increases IC reliability at no extra cost. Electronic Engineering, February, pp. 66–68

    Google Scholar 

  60. Hnatek, E. (1977): High-reliability semiconductors: paying more doesn’t always pay off. Electronics, vol. 50, pp. 101–105

    Google Scholar 

  61. Hoel, P. G. (1962): Introduction to mathematical statistics. John Wiley & Sons, Inc.

    Google Scholar 

  62. EEC 1709 (1996): Electronic components reliability - Reference - Condition for failure rates and stress models for conversion

    Google Scholar 

  63. IEEE-STD 493–1980: Recommended practice for the design of reliable industrial and commercial power systems

    Google Scholar 

  64. Information about semiconductor grade moulding compounds. Down Corning Corporation, Midland, Michigan, 48640 USA

    Google Scholar 

  65. Jensen, F.; Petersen, N. (1982): Bum-in - an engineering approach to the design and analysis of bum-in procedures. John Wiley & Sons, Inc.

    Google Scholar 

  66. Jensen, F. (1995): Electronic component reliability. John Wiley & Sons, Inc.

    Google Scholar 

  67. Kohyama, S. (1990): Very high speed MOS devices. Oxford Science Publications

    Google Scholar 

  68. Kulhanec, A. (1980): Kriterien für die Konfiguration eines Burn-in Systems. Elektronik Produktion & Prüftechnik, February, pp. 11–14

    Google Scholar 

  69. La fiabilité des grands systèmes électroniques et le contrôle d’entrée. Bulletin SAQ (Switzerland), vol.9 (1975), pp. 9–10

    Google Scholar 

  70. Locks, M. 0. (1973): Reliability, maintainability & availability assessment. Hayden Book Co., Inc. Rochelle Park, New Jersey

    Google Scholar 

  71. Lukis, L. W. F.: Reliability assessment - myths and misuse of statistics. Microelectronics and Reliability vol. 11, no. 11, pp. 177–184

    Google Scholar 

  72. Mäder, R.; Meyer, K.-D. (1974): Zuverlässigkeit diskreter passiver Bauelemente. In: Zuverlässigkeit elektronischer Bauelemente. VEB Deutscher Verlag für Grundstoff-industrie, pp. 93–105

    Google Scholar 

  73. Masing, W. (1974): Qualitätslehre. DGQ 19, Beuth Verlag, Berlin

    Google Scholar 

  74. Merz, H. (1980): Sichedrung der Materialqualität. Verlag Technische Rundschau, Bern

    Google Scholar 

  75. Messerschmitt-Bölkow-Blohm (1986): Technische Zuverlässigkeit. 3rd Edition, Springer Verlag, Berlin

    Google Scholar 

  76. MIL-HDBK-217 (1991): Reliability prediction of electronic equipment. Edition F

    Google Scholar 

  77. MIL-HDBK-338: Electronic reliability design handbook; vol. I (1988); vol. II (1984)

    Google Scholar 

  78. MIL-S-19500, General specification for semiconductor devices. U. S. Department of Defense, Washington D. C.

    Google Scholar 

  79. Mood, A.; Graybill, F. A. (1963): Introduction to the theory of statistics. McGraw-Hill Co.

    Google Scholar 

  80. Myers, D. K.: (1978): What happens to semiconductors in a nuclear environment? Electronics, 16th March, pp. 131–133

    Google Scholar 

  81. NASA CR-1126–1129 (1968): Practical reliability; vol. 1 to 4

    Google Scholar 

  82. NTT (1985): Standard reliability tables for semiconductor devices, Nippon Telegraph and Telephone Corporation, Tokyo

    Google Scholar 

  83. Novak, V.; Kadlec, J. (1972): Thermische Übertragung in integrierten Schaltungen. Fernmeldetechnik vol. 12, no. 3, pp. 117–118

    Google Scholar 

  84. O’Connor, N. (1991): Practical reliability engineering. 3rd edn., John Wiley & Sons, Inc.

    Google Scholar 

  85. O’Connor, P. D. T. (1993): Quality and reliability: illusions and realities. Quality and Reliability Engineering Internat., vol. 9, pp. 163–168

    Article  MathSciNet  Google Scholar 

  86. Ott, W. H. (1988): Noise reduction techniques in electronic systems. 2nd edn. J. Wiley & Sons, Inc.

    Google Scholar 

  87. Pecht, M. (1994): Reliability predictions: their use and misuse. Proc. Annual Reliability and Maintainability Symp., pp. 386–387

    Google Scholar 

  88. Pecht, M. G.; Palmer, M. and Naft, J. (1987): Thermal reliability management in PCB design. Proc. Annual Reliab. and Maintainability Symp., pp. 312–315

    Google Scholar 

  89. Pecht, M. G. (1994): Integrated circuit, hybrid, and multichip module package design guidelines. John Wiley & Sons, Inc.

    Google Scholar 

  90. Pecht, M. G. (1994): Quality conformance and qualification of microelectronic package and interconnects. John Wiley & Sons, Inc.

    Google Scholar 

  91. Pecht, M. G. (1995): Plastic encapsulation of microcircuits. John Wiley & Sons, Inc.

    Google Scholar 

  92. Peck, D. S.; Trapp, O. D. (1978): Accelerated testing book. Technology Associates, Portola Valey, California

    Google Scholar 

  93. Pollino, E. (1989): Microelectronic reliability. Integrity, assessment and assurance. Tome II, Artech House, London

    Google Scholar 

  94. Polovko, A. M. (1968): Fundamentals of reliability theory. Academic Press, New York

    MATH  Google Scholar 

  95. Prasad, R. P. (1989): Surface mounted technology. Van Nostrand Reinhold

    Google Scholar 

  96. Robach, Ch. (1978): Le test en production. Conception des systèmes logiques tolérant les pannes. Grenoble, February

    Google Scholar 

  97. Robineau, J. et al. (1992): Reliability approach in automotive electronics. Int. Conf. ES-REF, pp. 133–140

    Google Scholar 

  98. Rooney, J. P. (1989): Storage reliability. Proc. Annual Reliability and Maintainability Symp., pp. 178–182

    Book  Google Scholar 

  99. Rubinstein, E. (1977): Independent test labs: Caveat Emptor. IEEE Spectrum, vol. 14, no. 6, pp. 44–50

    Google Scholar 

  100. Schaefer, E. (1980): Burn-in: Was ist das? Qualität und Zuverlässigkeit, vol. 25, no. 10, pp. 296–304

    Google Scholar 

  101. Schmidt-Brücken, H. (1961): Die Zuverlässigkeit sich verbrauchender Bauelemente. NTF vol. 24, pp. 188–204

    Google Scholar 

  102. Schwartz, Ph. (1981): Le burn-in: une garantie de la fiabilité des circuits intégrés. EI (France) no. 16, pp. 57–62

    Google Scholar 

  103. Shooman, M. L. (1968): Probabilistic reliability. An engineering approach. McGraw—Hill Book Co., New York

    Google Scholar 

  104. Siewiorek, D. P. (1991): Architecture of fault-tolerant computers, an historical perspective. Proc. IEEE, vol. 79, no. 12, pp. 1710–1734

    Article  Google Scholar 

  105. Silberhorn, A. (1980): Äussere, einschränkende Einflüsse auf den Einsatz von VLSI-Bausteinen. Bulletin SEV/VSE vol. 71, no. 2, pp. 54–56

    Google Scholar 

  106. Störmer, H. (1983): Mathematische Theorie der Zuverlässigkeit. Oldenbourg Verlag, Munich

    Google Scholar 

  107. Suich, R. C.; Patterson, R. L. (1993): Minimize system cost by choosing optimal subsystem reliability and redundancy. Proc. Annual Reliability and Maintainability Symp., pp. 293–297

    Google Scholar 

  108. Traon, Le, J.-Y; Tréheux, M. (1977): L’environnement des matériels de télécommunications. L’écho des recherches, October, pp. 12–21

    Google Scholar 

  109. Tretter, J. (1974): Zum Driftverhlaten von Bauelementen und Geräten. Qualität und Zuverlässigkeit (Germany), vol. 19, no 4, pp. 73–79

    Google Scholar 

  110. Villemeur, A. (1993): Sûreté de fonctionnement des systèmes industriels. 2nd Edition, Eyrolles, Paris

    Google Scholar 

  111. Williams, S. D. G. (1980): Fault tree analysis. In: Arsenault, J. E.; Roberts, J. A. (eds.): Reliability and maintainbility of electronic systems. Computer Science Press

    Google Scholar 

  112. Wong, K. L. (1990): What is wrong with the existing reliability methods? Quality and Reliability Engineering Internat., vol. 6, pp. 251–258

    Article  Google Scholar 

  113. Denson, W. K.; Keene Jr., S. J. (1998): A new reliability-prediction tool. Proceedings of the Annual Reliability and Maintainability Symp., January 19–22, Anaheim, California (USA), pp.15–22

    Google Scholar 

  114. Lin, D. L.; Welsher, T. L. (1998): Prediction of product failure rate due to event-related failure mechanisms. Proceedings of the Annual Reliability and Maintainability Symp., January 19–22, Anaheim, California (USA), pp. 339–344

    Google Scholar 

  115. De Mari, A. (1968): An accurate numerical steady-state one-dimensional solution of the pn junction. Solid-St. Electron., vol. 11, pp. 33–39

    Google Scholar 

  116. Frohman-Bentchkowski, D.; Grove, A. S. (1969): Conductance of MOS transistors in saturation. IEEE Trans. Electron. Dev., vol. 16, pp. 108–116

    Article  Google Scholar 

  117. Sincell, J.; Perez, R. J.; Noone, P. J.; Oberhettinger, D. (1998): Redundancy verifiaction analysis: an alternative to FMEA for low-cost missions. Proceedings of the Annual Reliability and Maintainability Symp., January 19–22, Anaheim, California (USA), pp. 54–60

    Google Scholar 

  118. Grove, A. S.; Deal, B. E.; Snow, E. H.; Sah, C. T. (1965): Investigation of thermally oxidized silicon surfaces using MOS structures. Solid-State Electron., vol. 8, pp. 145–165

    Article  Google Scholar 

  119. Hauser, I. J. R.; Littlejohn, M. A.(1968): Approximations for accumulation and inversion space-charge layers in semiconductors. Solid-St. Electron., vol. 11, pp. 667–674

    Article  Google Scholar 

  120. Leistiko, O.; Grove, A. S.; Sah, C. T. (1965): Electron and hole mobility in inversion layers on thermally oxidized silicon surfaces. IEEE Trans. Electron Dev., vol. 12, pp. 248–255

    Article  Google Scholar 

  121. Hoffman, D. R. (1998): An overview of concurrent engineering. Proceedings of the Annual Reliability and Maintainability Symp., January 19–22, Anaheim, California (USA), pp. 1–7

    Google Scholar 

  122. Onodera, K. (1997): Effective techniques of FMEA at each life-cycle stage. Proceedings of the Annual Reliability and Maintainability Symp., January 13–16, Philadelphia, Pennsylvania (USA), pp. 50–56

    Google Scholar 

  123. Gulati, R.; Dugan, J. B. (1997): A modulat approach for analyzing static & dynamic fault-trees. Proceedings of the Annual Reliability and Maintainability Symp., January 13–16, Philadelphia, Pennsylvania (USA), pp. 57–63

    Google Scholar 

  124. Price, C. J.; Taylor, N. S. (1998): FMEA for multiple failures. Proceedings of the Annual Reliability and Maintainability Symp., January 19–22, Anaheim, California (USA), pp. 43–47

    Google Scholar 

  125. Bowles, J. B. (1998): The new SAE FMEA standard. Proceedings of the Annual Reliabil-ity and Maintainability Symp., January 19–22, Anaheim, California (USA), pp. 48–53

    Google Scholar 

  126. Upadhayayula, K.; Dasgupta, A. (1998): Guidelines for physics-of-failure based accelerated stress testing. Proceedings of the Annual Reliability and Maintainability Symp., January 19–22, Anaheim, California (USA), pp. 345–364

    Google Scholar 

  127. Klyatis, L. M. (1997): One strategy of accelerated-testing technique. Proceedings of the Annual Reliability and Maintainability Symp., January 13–16, Philadelphia, Pennsylvania (USA), pp. 249–253

    Google Scholar 

  128. Epstein, G. (1998): Tailoring ESS startegies for effectiveness & efficiency. Proceedings of the Annual Reliability and Maintainability Symp., January 19–22, Anaheim, California (USA), pp. 37–42

    Google Scholar 

  129. Zimmer, W. J.; Keats, J. B.; Prairie, R. P. (1998): Characterization of non-monotone hazard rates. Proceedings of the Annual Reliability and Maintainability Symp., January 19–22, Anaheim, California (USA), pp. 176–181

    Google Scholar 

  130. Zimmerman, P. (1997): Concurrent engineering approach to the development of the TM6000. Proceedings of the Annual Reliability and Maintainability Symp., January 1316, Philadelphia, Pennsylvania (USA), pp. 13–17

    Google Scholar 

  131. Dugan, J. B.; Venkataraman, R. G. (1997): DlFtree: a software package for analyzing dynamic fault-tree models. Proceedings of the Annual Reliability and Maintainability Symp., January 13–16, Philadelphia, Pennsylvania (USA), pp. 64–70

    Google Scholar 

  132. Anand, A.; Somani, A. K. (1998): Hierarchical analysis of fault trees with dependencies, using decomposition. Proceedings of the Annual Reliability and Maintainability Symp., January 19–22, Anaheim, California (USA), pp. 69–75

    Google Scholar 

  133. Kocza, G.; Bossche, A. (1997): Automatic fault-tree synthesis and real-time tree trimming, based on computer models. Proceedings of the Annual Reliability and Maintainability Symp., January 13–16, Philadelphia, Pennsylvania (USA), pp. 71–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Băjenescu, T.I., Bâzu, M.I. (1999). Introduction. In: Reliability of Electronic Components. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58505-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58505-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63625-7

  • Online ISBN: 978-3-642-58505-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics