Advertisement

Optical Study of Bubble Dynamics in Microgravity Pool Boiling

  • Johannes Straub
Part of the Heat and Mass Transfer book series (HMT)

Abstract

Heat and mass transfer in boiling is determined by thermophysical mechanisms, especially by the interrelations between the surface of the heater and the liquid, and by the interfacial phenomena between liquid and vapor. It is generally assumed that the external forces like gravity in pool and shear forces in flow boiling are the most important factors for the bubble dynamics which determines the heat transfer. In microgravity buoyancy is completely or at least mostly eliminated. Therefore, pool boiling experiments in microgravity permit the study of heat transfer, and the related bubble dynamics caused by the growing bubbles themselves and by bubble interactions. In this article measurements of heat transfer and observed bubble behavior are discussed resulting from experiments performed in microgravity.

Keywords

Heat Transfer Heat Flux Critical Heat Flux Bubble Growth Boiling Heat Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe Y., Oka T., Mori Y.H., Toshiharu M., Nagashima A, (1994) Int. J. of Heat and Mass Tranfer, 37, pp.2405.Google Scholar
  2. Bromley, L.A.,(1950) Heat transfer in stable film boiling, Chem.Eng.Prog.,46, pp. 221–227.Google Scholar
  3. Cooper, M.G., A.J.P. Lloyd, (1969) The Microlayer in Nucleate Pool Boiling, Int. J. Heat and Mass Transfer,12 (1969), pp. 895–913.CrossRefGoogle Scholar
  4. Derjaguin B.V., (1955) Definition of the concept of and magnitude of the disjoining pres sure and its role in the static’s and kinetics of thin layers of liquid. Kolloidnyi Zhurnal, Vol. 17, pp. 191–197.Google Scholar
  5. Fritz W. (1934) Berechnungen des Maximalvolumens von Dampfblasen. Z.Physik. 36, pp. 379–384, (1934).Google Scholar
  6. Frederking, T.H.K. and Clark, J.A., (1963), Natural Convection Film Boiling on a sphere, Adv. Crogen. Eng., 8, pp.501Google Scholar
  7. Lay, J.H., and Dhir, V.K. (1995), Shape of a Vapor Stem During Nucleate Boiling of Satu rated Liquids, J. Heat Transfer, Vol.117, pp. 394–401.CrossRefGoogle Scholar
  8. Lee H.S. and Merte H., Chiaramonte, F. (1997), Pool boiling Curve in Microgravity, J. Thermophysics and Heat Transfer, Vol. 11, No.2.Google Scholar
  9. Lienhard, J.H. and Dhir V.K. (1973), Hydrodynamic Prediction of Peak Pool Boiling Heat Fluxes from Finite Bodies, J. Heat Transfer Vol.95 pp. 152–158.CrossRefGoogle Scholar
  10. Marek R. (1996) Einfluß thermokapillarer Konvektion und inerter Gase beim Blasensieden in unterkühlter Flüssigkeit. Dissertation TU München 1996.Google Scholar
  11. Merte H., J.A. Clark (1964) Boiling Heat Transfer to a Cryogenic Fluid at Standard, Frac tional, and Near-Zero Gravity. Int. J. of Heat and Mass Transfer, 86, pp.351–359 (1964).Google Scholar
  12. Ohta H. Kawaji M., Azuma H. et al. (1997):TR-1A Rocket Experiment on Nucleate Pool boiling heat Transfer un der Microgravity. DSC-Vol. 62/HTD-Vol.354, Microelectro-mechanical Systems (MEMS) ASME 1997.Google Scholar
  13. Picker G. (1998) Nicht-Gleichsgewichts-Effekte beim Wachsen und Kondensieren von Dampfblasen. Dissertation TU München 1998, Herbert Utz Verlag, München (1998).Google Scholar
  14. Pitschmann, P. and Grigull, U., (1970) Filmboiling on horizontal cylinders, Wärme-und Stoffubertragung, 3.pp75–84.CrossRefGoogle Scholar
  15. Plesset M.S., S.S. Sadhal (1979) An Analytical Estimation of the Microlayer Thickness in Nucleate Boiling: J. Heat Transfer, 101 (1979) pp. 180–182.Google Scholar
  16. Rohsenow W.M. (1952) A Method of Correlating Heat Transfer data for Surface Boiling of Liquids. Trans. ASME, Ser. C, J. Heat Transfer 74, pp. 969–976.Google Scholar
  17. Siegel R. (1967) Effects of Reduced Gravity on Heat Transfer. Advances in Heat Transfer, Vol.4, Academic Press, New York, London, pp. 143–228 (1967).Google Scholar
  18. Son G. and V.K. Dhir (1998) Numerical Simulation of a Single Bubble During Partial Nu cleate Boiling on a Horizontal Surface, Heat Transfer 1998, Proceedings of 11 th IHTC, Kyongju, Korea, Vol.2, pp. 533–538Google Scholar
  19. Steinbichler M., S. Micko, J. Straub (1998) Nucleate Boiling Heat Transfer on Small Hemi spherical Heaters and a Wire Under Microgravity. Heat Transfer 1998, Proceedings of the 11th IHTC, Vol 2, pp. 539–544, Kyongju, Korea (1998).Google Scholar
  20. Stephan P., J. Hammer (1994) A New Model for Nucleate Boiling. Heat Transfer Heat and Mass Transfer 30 (1994) pp. 119–125.Google Scholar
  21. Straub J., M. Zell, B. Vogel (1990) Pool Boiling in a reduced Gravity Field. Proc. 9th Int. Heat Transfer Conf., G. Hetserony, Ed. pp. 129–155, New York, HemishereGoogle Scholar
  22. Straub J., Zell M., Vogel B. (1992) Proc. First European Symposium Fluids in Space, Ajac-cio, France 1991, ESA SP-353, 1992.Google Scholar
  23. Straub J. (1993) The Role of Surface Tension for Two-Phase Heat and Mass Transfer in the Absence of Gravity. Third World Conference on Experimental Heat Transfer, Fluid Me chanics, and Thermodynamics, Honolulu, Hawaii, USA October 1993, and Experimen tal Thermal and Fluid Science 1994; 9 pp. 253–273.Google Scholar
  24. Straub, J. Winter, G. Picker, M. Zell (1995) Boiling on a Miniature Heater under Micro gravity—A Simulation for Cooling of Electronic Devices. Proc. Of the 30th National Heat Transfer Conf., Portland, Oregon, (1995), ASME, HDT 1995, 305, pp. 61–69.Google Scholar
  25. Straub J.: The Micro Wedge Model (1995) A Physical Description of Nucleate Boiling Without External Forces. Lorenz Ratke (ed.) Materials and Fluids under Low Gravity. European Symposium on Gravity Dependent Phenomena in Physical Sciences <9,1995, Berlin>,GT-Springer Berlin.. 1996.Google Scholar
  26. Straub J. and Micko S. (1996), Boiling on a Wire under Microgravity Conditions-First Re sults from a Space Experiment, Performed in May 1996, Proc. of Eurotherm Seminar No.48, Paderborn, Germany, pp. 275–282, Edizioi ETS Pisa, Italy.Google Scholar
  27. Vogel B.,(1993), Analyse der Energieströme beim Sieden unter Schwerelosigkeit. Disserta tion TU München (1993).Google Scholar
  28. Wayner P.C., (1992), Evaporation and Stress in the Contact Line Region. Proc. Of the Engi neering Foundation Conference on Pool and Flow Boiling, V.K. Dhir and A.E. Bergles, eds. Santa Barbara, Cal. 1992, pp. 251–256.Google Scholar
  29. Weinzierl A., (1984), Untersuchung des Wärmeübergangs und seiner Transportmechanimen bei Siedevorgängen unter Schwerelosigkeit. Dissertation TU München (1984).Google Scholar
  30. Winter J., (1997), Kinetik des Blasenwachstums. Dissertation TU München (1997), Herbert Utz Verlag, München (1998).Google Scholar
  31. Zell M., (1991), Untersuchung des Siedevorgangs unter reduzierter Schwerkraft. Disserta tion TU München (1991).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Johannes Straub
    • 1
  1. 1.Lehrstuhl A für ThermodynamikTechnische Universität MünchenGarchingGermany

Personalised recommendations