Advertisement

Ammonia Absorption Method and Liquid Crystal Thermography for Accurate Local Mass and Heat Transfer Measurements

  • Martin Fiebig
  • Karsten Schulz
Part of the Heat and Mass Transfer book series (HMT)

Abstract

The ammonia absorption method (AAM) and transient liquid crystal thermography (LCT) are employed to measure convective mass and heat transfer accurately with high local resolution. Both optical methods use fully automated imaging techniques and evaluation. By analogy the mass transfer results are converted to heat transfer results. The LCT needs optical accessibility during the experiment, the AAM does not. Experimental set-ups, procedures and results are given. The AAM and LTC results are compared for the very complex three dimensional channel flow with heat transfer generated by wing type vortex generators at one channel wall. Global and span averaged Nusselt number differences are below the individual error estimates of 5%. Local differences can be higher and are traced to differences in boundary conditions. For local measurements the AAM is superior to the LCT because of the constant concentration/temperature boundary condition.

Keywords

Heat Transfer Nusselt Number Wind Tunnel Heat Transfer Enhancement Vortex Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baughn JW, Ireland PT, Jones TV, Saniei N (1989) A comparison of the transient and heated-coating methods for the measurement of local heat transfer coefficients on a pin fin. J. of Heat Transfer, 111:877–881CrossRefGoogle Scholar
  2. Behle M (1997) Wärme-und stömungstechnische Untersuchung stanzgeprägter Hutzen als Längswir belerzeuger. ISBN 3-89588-769-2 Cuvillier, GöttingenGoogle Scholar
  3. Eckert ERG (1976) Analogies to heat transfer processes. In: Eckert and Goldstein (eds) Measurements in heat transfer, ed. by Eckert, Hemisphere Publishing, New York, pp 397–423Google Scholar
  4. Fiebig M, Kallweit P, Mitra NK (1986) Wing-type vortex generators for heat transfer enhancement. Proc. 8th IHTC San Francisco pp 2909–2914Google Scholar
  5. Fiebig M, Kallweit P, Mitra NK., Tiggelbeck S (1991) Heat transfer enhancement and drag by longitu dinal vortex generators in channel flow. Exp. Therm. Fluid Sc. 4:103–114CrossRefGoogle Scholar
  6. Fiebig M, Valecia A, Mitra N K (1993) Wing-type vortex generators for fin-and-tube heat exchangers, Exp. Therm. Fluid Sc. 7:287–295CrossRefGoogle Scholar
  7. Fiebig M, Valencia A, Mitra NK (1994) Local heat transfer and flow losses in fin-and-tube heat ex changers: a comparison of round and flat tubes. Exp. Therm. Fluid Sc. 8:35–45CrossRefGoogle Scholar
  8. Ireland PT, Jones TV (1986) Detailed measurements of heat transfer on and around a pedestal in fully developed channel flow. Proc. 8th IHTC San Francisco pp 975–979Google Scholar
  9. Kottke V, Blenke H, Schmidt K G (1977a) Eine remissionsfotometrische Meßmethode zur Bestim mung örtlicher Stoffübergangskoeffizienten bei Zwangskonvektion in Luft. Sonderdruck aus Wärme und Stoff+übertragung/Thermo-and Fluiddynamics, 10 pp 9, SpringerCrossRefGoogle Scholar
  10. Kottke V, Blenke H, Schmidt K D (1977b) Messung und Berechnung des örtlichen und mittleren Stoffüberganges an stumpf angeströmten Kreisscheiben bei unterschiedlicher Turbulenz. Sonderdruck aus Wärme und Stoffubertragung/Thermo-and Fluiddynamics, 10, pp 89 SpringerCrossRefGoogle Scholar
  11. Leiner W, Schulz K, Behle M, Lorenz S (1996) Imaging techniques to measure local heat and mass transfer. In: MechE Conf. Trans.3, Optical Methods and Data Processing in Heat and Fluid Row, pp 1336–1448, ISBN 0 85298 992 XGoogle Scholar
  12. Moffat R J (1990) Experimental heat transfer. Proc. 9th IHTC Jerusalem Vol. 1 pp 187–205Google Scholar
  13. Neumann H (1997) Experimentelle Untersuchungen von hydrodynamischen und thermischen Anlauf strömungen mit periodisch angeordneten Wirbelerzeugern. ISBN 3-89588-883-4 Cuvillier, GöttingenGoogle Scholar
  14. Neumann H, Hahne H-W, Müller U, Fiebig M (1998) Heat transfer and flow losses in self oscillating channel flows with rectangular vortex generators. In: Fiebig and Mitra (eds) Notes on Numerical Fluid Mechanics 63: Vortices and Heat Transfer, Vieweg, Braunschweig/Wiesbaden, pp 214–251Google Scholar
  15. Schulz K (1997) Entwicklung und Erprobung optischer Verfahren zur Messung lokalen konvektiven Wärmeübergangs mittels digitaler Bilderfassung. Dissertation Ruhr-Universität BochumGoogle Scholar
  16. Schulz K, Fiebig M (1996) Accurate inexpensive local heat/mass transfer determination by digital image processing applied to the ammonia absorption method. Proc. 2nd ETS, Rome, pp. 9–21Google Scholar
  17. Schulz K, Behle M, Leiner W (1996) High local resolution measurements of heat transfer coefficients by liquid crystal thermography. In: IMechE Conf Trans. 3, Optical Methods and Data Processing in Heat and Fluid flow pp 57–69, ISBN 0 85298 992 XGoogle Scholar
  18. Thoma H (1921) Hochleistungskessel, Julius Springer, BerlinCrossRefGoogle Scholar
  19. Valencia A (1993) Wärmeübergang und Druckverlust in Lamellen-Rohr-Wärmeübertragern. Disserta tion, Ruhr Universität BochumGoogle Scholar
  20. Wang Z, Ireland P T, Jones T V (1993) An advanced method of processing liquid crystal video signals from transient heat transfer experiments. In: Gas Turbine and Aeroengine Congress and Exposition, ASME 93-GT-282ppl-7Google Scholar
  21. Weber D (1996) Experimente zu selbsterregt instationären Spaltströmungen mit Wirbelerzeugern und Wärmeübertragung. ISBN 3-89588-633-5 Cuvillier, GöttingenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Martin Fiebig
    • 1
  • Karsten Schulz
    • 1
  1. 1.Institut für Thermo- & Fluid-DynamikRuhr Universität BochumBochumGermany

Personalised recommendations