Skip to main content

Retinoids in Neural Development

  • Chapter
Book cover Retinoids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 139))

Abstract

The evidence for a crucial role for vitamin A and its derivatives, the retinoids, in the development and maintenance of the nervous system is now beyond doubt, and this chapter presents the data to support this contention. The evidence comes from several types of experiment: the induction of neural differentiation in embryonal carcinoma cells; the effects of excess retinoids; the effects of a deficiency of retinoids; the distribution of retinoid-binding proteins and retinoid receptors and the results of interference with their signalling functions; the detection of endogenous retinoids; and the distribution of retinoid synthesising enzymes. Each of these topics are reviewed below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramovici A, Kam J, Liban E, Barishak RY (1978) Incipient histopathological lesions in citral-induced microphthalmos in chick embryos. Dev Neurosci 1:177–185

    PubMed  CAS  Google Scholar 

  • Alexandre D, Clarke JDW, Oxtoby E, Yan Y-L, Jowett T, Holder N (1996) Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 122:735–746

    PubMed  CAS  Google Scholar 

  • Alles AJ, Sulik KK (1990) Retinoic acid-induced spina bifida: evidence for a pathogenic mechanism. Development 108:73–81

    PubMed  CAS  Google Scholar 

  • Amatruda TT, Sidell N, Ranyard J, Koeffler HP (1985) Retinoic acid treatment of human neuroblastoma cells is associated with decreased N-myc expression. Biochem Biophys Res Comm 126:1189–1195

    PubMed  CAS  Google Scholar 

  • Anchan RM, Drake DP, Haines CF, Gerwe EA, LaMantia A-S (1997) Disruption of local retinoid-mediated gene expression accompanies abnormal development in the mammalian olfactory pathway. J Comp Neurol 379:171–184

    PubMed  CAS  Google Scholar 

  • Andrews PA (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103:28–293

    Google Scholar 

  • Andrews PW, Gonczol E, Plotkin SA, Dignazio M, Oosterhuis JW (1986) Differentiation of TERA-2 human embryonal carcinoma cells into neurons and HCMV permissive cells. Induction by agents other than retinoic acid. Differentiation 31:119–126

    PubMed  CAS  Google Scholar 

  • Ang HL, Deltour L, Hayamizu TF, Zgombic-Knight M, Duester G (1996) Retinoic acid synthesis in mouse embryos during gastrulation and craniofacial development linked to class IV alcohol dehydrogenase gene expression. J Biol Chem 271:9526–9534

    PubMed  CAS  Google Scholar 

  • Ang HL, Duester G (1997) Initiation of retinoid signalling in primitive streak mouse embryos: spatiotemporal expression patterns of receptors and metabolic enzymes for ligand synthesis. Dev Dynam 208:536–543

    CAS  Google Scholar 

  • Ang S-L, Jin O, Rhinn M, Daigle N, Stevenson L, Rossant J (1996) A targeted mouse OTX2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122:243–252

    PubMed  CAS  Google Scholar 

  • Avantaggiato V, Acampora D, Tuorto F, Simeone A (1996) Retinoic acid induces stage-specific repatterning of the rostral central nervous system. Dev Biol 175:347–357

    PubMed  CAS  Google Scholar 

  • Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    PubMed  CAS  Google Scholar 

  • Bally-Cuif L, Gulisano M, Broccoli V, Boncinelli E (1995) c-otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryos. Mech of Dev 49:49–63

    CAS  Google Scholar 

  • Baroffio A, Dupin E, Le Douarin NM (1991) Common precursors for neural crest and mesectodermal derivatives in the cephalic neural crest. Development 112:301–305

    PubMed  CAS  Google Scholar 

  • Baroffio A, Dupin E, LeDouarin NM (1988) Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci USA 85:5325–5329

    PubMed  CAS  Google Scholar 

  • Barres BA, Lazar MA, Raff MC (1994) A novel role for thyroid hormone, glucocroti-coids and retinoic acid in timing oligodendrocyte development. Development 120:1097–1108

    PubMed  CAS  Google Scholar 

  • Bavik C, Ward SJ, Chambon P (1996) Developmental abnormalities in cultured mouse embryos deprived of retinoic acid by inhibition of yolk-sac retinol binding protein synthesis. Proc Natl Acad Sci USA 93:3110–3114

    PubMed  CAS  Google Scholar 

  • Berrard S, Faucon Biguet N, Houhou L, Lamouroux A, Mallet J (1993) Retinoic acid induces cholinergic differentiation of cultured newborn rat sympathetic neurons. J Neurosci Res 35:382–389

    PubMed  CAS  Google Scholar 

  • Blumberg B, Bolado J, Moreno TA, Kintner C, Evans RM, Papalopulu N (1997) An essential role for retinoid signalling in anteroposterior neural patterning. Development 124:373–379

    PubMed  CAS  Google Scholar 

  • Blumberg B, Mangelsdorf DJ, Dyck JA, Bittner DA, Evans RM, De Robertis EM (1992) Multiple retinoid-responsive receptors in a single cell: families of retinoid “X”receptors and retinoic acid receptors in the Xenopus egg. Proc Natl Acad Sci USA 89:2321–2325

    PubMed  CAS  Google Scholar 

  • Casper D, Davies P (1989) Stimulation of choline acetyltransferase activity by retinoic acid and sodium butyrate in a cultured human neuroblastoma. Brain Res 478:74–84

    PubMed  CAS  Google Scholar 

  • Chen W-H, Morriss-Kay GM, Copp AJ (1995) Genesis and prevention of spinal neural tube defects in the curly tail mutant mouse: involvement of retinoic acid and its nuclear receptors RAR-ß and RAR-γ. Development 121:681–691

    PubMed  CAS  Google Scholar 

  • Cho KWY, De Robertis EM (1990) Differential activation of Xenopus homeobox genes by mesoderm-inducing growth factors and retinoic acid. Genes Dev 4:1910–1916

    PubMed  CAS  Google Scholar 

  • Cockshut AM, Jonet L, Jeanny J-C, Vigny M, Raulais D (1994) Retinoic acid induced heparin-binding protein expression and localization during gastrulation, neurulation, and organogenesis. Dev Dynam 200:198–211

    Google Scholar 

  • Cohlan SQ (1953) Excessive intake of vitamin A as a cause of congenital abnormalities in the rat. Science 117:535–536

    PubMed  CAS  Google Scholar 

  • Colbert MC, Linney E, LaMantia AS (1993) Local sources of retinoic acid coincide with retinoid-mediated transgene activity during embryonic development. Proc Natl Acad Sci USA 90:6572–6576

    PubMed  CAS  Google Scholar 

  • Colbert MC, Rubin WW, Linney E, LaMantia E-S (1995) Retinoid signalling and the generation of regional and cellular diversity in the embryonic mouse spinal cord. Dev Dynam 204:1–12

    CAS  Google Scholar 

  • Conlon RA, Rossant J (1992) Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116:357–368

    PubMed  CAS  Google Scholar 

  • Connor MJ, Smit MH (1987) Terminal-group oxidation of retinol by mouse epidermis. Biochem J 244:489–492

    PubMed  CAS  Google Scholar 

  • Cunningham ML, MacAuley A, Mirkes PE (1994) From gastrulation to neurulation: transition in retinoic acid sensitivity identifies distinct stages of neural patterning in the rat. Dev Dynam 200:227–241

    CAS  Google Scholar 

  • Dekker E-J, Pannese M, Houtzager E, Boncinelli E, Durston A (1992) Colinearity in the Xenopus laevis Hox-2 complex. Mech of Dev 40:3–12

    Google Scholar 

  • Dekker E-J, Vaessen M-J, van den Berg C, Timmermans A, Godsave S, Holling T, Niewkoop P, van Kessel AG, Durston AD (1994) Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos. Development 120:973–985

    PubMed  CAS  Google Scholar 

  • Dencker L, Annerwall E, Busch C, Eriksson U (1990) Localization of specific retinoid binding sites and expression of cellular retinoic acid-binding protein (CRABP) in the early mouse embryo. Development 110:343–352

    PubMed  CAS  Google Scholar 

  • Dersch H, Zile MH (1993) Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids. Dev Biol 160:424–433

    PubMed  CAS  Google Scholar 

  • Deschamps J, de Laaf R, Joosen L, Meijlink F, Destree O (1987) Abundant expression of homeobox genes in mouse embryonal carcinoma cells correlates with chemically induced differentiation. Proc Natl Acad Sci USA 84:1304–1308

    PubMed  CAS  Google Scholar 

  • Deschamps J, de Laaf R, Verrijzer P, de Gouw M, Destree O, Meijlink F (1987) The mouse Hox2.3 homeobox-containing gene: regulation in differentiating pluripotent stem cells and expression pattern in embryos. Differentiation 35:21–30

    PubMed  CAS  Google Scholar 

  • Dickman ED, Thaller C, Smith SM (1997) Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 124:3111–3121

    PubMed  CAS  Google Scholar 

  • Die-Smulders CEM, Sturkenboom MCJM, Veraart J, van Katwijk C, Sastrowijoto P, van der Linden E (1995) Severe limb defects and craniofacial anomalies in a fetus conceived during acitretin therapy. Teratology 52:215–219

    PubMed  Google Scholar 

  • Dinsmore JH, Solomon F (1991) Inhibition of MAP2 expression affects both morphological and cell division phenotypes of neuronal differentiation. Cell 64:817–826

    PubMed  CAS  Google Scholar 

  • Dolle P, Fraulob V, Kastner P, Chambon P (1994) Developmental expression of murine retinoid X receptor (RXR) genes. Mech of Dev 45:91–104

    CAS  Google Scholar 

  • Dolle P, Ruberte E, Leroy P, Morriss-Kay G, Chambon P (1990) Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110:1133–1151

    PubMed  CAS  Google Scholar 

  • Drager UC, McCaffery P (1995) Retinoic acid synthesis in the developing spinal cord. In: H. Weiner, et al (eds) Enzymology and Molecular Biology of Carbonyl Metabolism. Plenum, New York, p 185

    Google Scholar 

  • Dupin E, LeDouarin NM (1995) Retinoic acid promotes the differentiation of adrenergic cells and melanocytes in quail neural crest cultures. Dev Biol 168:529–548

    PubMed  CAS  Google Scholar 

  • Durston AJ, Timmermans JPM, Hage WJ, Hendricks HFJ, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing nervous system. Nature 340:140–144

    PubMed  CAS  Google Scholar 

  • Edwards MKS, McBurney MW (1983) The concentration of retinoic acid determines the differentiated cell types formed by a teratocarcinoma cell line. Dev Biol 98:187–191

    PubMed  CAS  Google Scholar 

  • Edwards RB, Adler AJ, Dev S, Claycomb RC (1992) Synthesis of retinoic acid from retinol by cultured rabbit Muller cells. Exp Eye Res 54:481–490

    PubMed  CAS  Google Scholar 

  • Elmazar MMA, Reichert U, Shroot B, Nau H (1996) Pattern of retinoid-induced teratogenic effects: possible relationship with relative selectivity for nuclear retinoid receptors RARα, RARß, and RARγ. Teratology 53:158–167

    PubMed  CAS  Google Scholar 

  • Fawcett D, Pasceri P, Fraser R, Colbert M, Rossant J, Giguere V (1995) Postaxial polydactyly in forelimbs of CRABP-II mutant mice. Development 121:671–679

    PubMed  CAS  Google Scholar 

  • Finley MFA, Kulkarni N, Huettner JE (1996) Synapse formation and establishment of neuronal polarity by P19 embryonic carcinoma cells. J Neurosci 16:1056–1065

    PubMed  CAS  Google Scholar 

  • Fischer I, Shea TB, Sapirstein VS, Kosik KS (1985) Expression and distribution of microtubule-associated protein 2 (MAP2) in neuroblastoma and primary neuronal cells. Devl. Brain Res 25:99–109

    Google Scholar 

  • Fisher CM (1989)“Catatonia”due to disulphiram toxicity. Arch Neurol 46:798–804

    PubMed  CAS  Google Scholar 

  • Gale E, Prince V, Lumsden A, Clarke J, Holder N, Maden M (1996) Late effects of retinoic acid on neural crest and aspects of rhombomere identity. Development 122:783–793

    PubMed  CAS  Google Scholar 

  • Ghyselinck NB, Dupe V, Dierich A, Massaddeq N, Gamier J-M, Rochette-Egly C, Chambon P, Mark M (1997) Role of the retinoic acid receptor beta (RARß ) during mouse development. Int J Dev Biol 41:425–447

    PubMed  CAS  Google Scholar 

  • Godbout R, Packer M, Poppema S, Dabbath L (1996) Localization of cytosolic aldehyde dehydrogenase in the developing chick retina: in situ hydridisation and immunohistochemical analyses. Dev Dynam 205:319–331

    CAS  Google Scholar 

  • Gorry P, Lufkin T, Dierich A, Rochette-Egly C, Decimo D, Dolle P, Mark M, Durand B, Chambon P (1994) The cellular retinoic acid binding protein I is dispensable. Proc Natl Acad Sci USA 91:9032–9036

    PubMed  CAS  Google Scholar 

  • Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10:1135–1147

    PubMed  CAS  Google Scholar 

  • Grondona JM, Kastner P, Gansmuller A, Decimo D, Chambon P, Mark M (1996) Retinal dysplasia and degeneration in RARß 2/RARγ2 compound mutant mice. Development 122:2173–2188

    PubMed  CAS  Google Scholar 

  • Gustafson A-L, Dencker L, Eriksson U (1993) Non-overlapping expression of CRBP I and CRABP I during pattern formation of limbs and craniofacial structures in the early mouse embryo. Development 117:451–460

    PubMed  CAS  Google Scholar 

  • Hale F (1933) Pigs born without eye balls. J Hered 24:105–106

    Google Scholar 

  • Haskell BE, Stach RW, Werrbach-Perez K, Perez-Polo JR (1987) Effect of retinoic acid in nerve growth factor receptors. Cell Tissue Res 247:67–73

    PubMed  CAS  Google Scholar 

  • Heine UI, Roberts AB, Munoz EF, Roche NS, Sporn MB (1985) Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo. Virchow’s Arch B Cell Pathol 50:135–152

    CAS  Google Scholar 

  • Hendry IA, Belford DA (1991) Retinoic acid potentiates the neurotrophic but not the mitogenic action of the class 1 heparin-binding growth factor (HBGF-1). Brain Res 542:29–34

    PubMed  CAS  Google Scholar 

  • Henion PD, Weston JA (1994) Retinoic acid selectively promotes the survival and proliferation of neurogenic precursors in cultured neural crest populations. Dev Biol 161:243–250

    PubMed  Google Scholar 

  • Hill J, Clarke JDW, Vargesson N, Jowett T, Holder N (1995) Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech of Dev 50:3–16

    CAS  Google Scholar 

  • Ho L, Mercola M, Gudas LJ (1994) Xenopus laevis cellular retinoic acid-binding protein: temporal and spatial expression pattern during early embryogenesis. Mech of Dev 47:53–64

    CAS  Google Scholar 

  • Holder N, Hill J (1991) Retinoic acid modifies development of the midbrain-hindbrain border and affects cranial ganglion formation in zebrafish embryos. Development 113:1159–1170

    PubMed  CAS  Google Scholar 

  • Horton C, Maden M (1995) Endogenous distribution of retinoids during normal development and teratogenesis in the mouse embryo. Dev Dynam 202:312–323

    CAS  Google Scholar 

  • Hunter K, Maden M, Summerbell D, Eriksson U, Holder N (1991) Retinoic acid stimulates neurite outgrowth in the amphibian spinal cord. Proc Natl Acad Sci USA 80:5525–5529

    Google Scholar 

  • Hyatt GA, Schmitt EA, Marsh-Armstrong NR, Dowling JE (1992) Retinoic acidinduced duplication of the zebrafish retina. Proc Natl Acad Sci USA 89:8293–8297

    PubMed  CAS  Google Scholar 

  • Ido A, Miura Y, Tamaoki T (1994) Activation of ATBF1, a multiple-homeodomain zincfinger gene, during neuronal differentiation of murine embryonal carcinoma cells. Dev Biol 163:184–187

    PubMed  CAS  Google Scholar 

  • Johnson JE, Zimmerman K, Saito T, Anderson DJ (1992) Induction and repression of mammalian achaete-scute homologue (MASH) gene expression during neuronal differentiation of P19 embryonal carcinoma cells. Development 114:75–87

    PubMed  CAS  Google Scholar 

  • Jones BB, Ohno CK, Allenby G, Boffa MB, Levin AA, Grippo JF, Petkovich M (1995) New retinoid X receptor subtypes in zebra fish (Danio rerio) differentially modulate transcription and do not bind 9-cis retinoic acid. Mol Cell Biol 15:5226–5234

    PubMed  CAS  Google Scholar 

  • Jones-Villeneuve EMV, McBurney MW, Rogers KA, Kalnins VI (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94:253–262

    PubMed  CAS  Google Scholar 

  • Joore J, van der Lans GBLJ, Lanser PH, Vervaart JMA, Zivkovic D, Speksnijder JE, Kruijer W (1994) Effects of retinoic acid on the expression of retinoic acid receptors during zebrafish embryogenesis. Mech of Dev 46:137–150

    CAS  Google Scholar 

  • Kadomatsu K, Huang R-P, Suganuma T, Murata F, Muramatsu T (1990) A retinoic acid responsive gene MK found in the teratocarcinoma system is expressed spatially and temporally controlled manner during mouse embryogenesis. J Cell Biol 110:607–616

    PubMed  CAS  Google Scholar 

  • Kalter H, Warkany J (1959) Experimental production of congenital malformations in mammals by metabolic procedure. Physiol Rev 39:69–115

    PubMed  CAS  Google Scholar 

  • Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, Vonesch J-L, Dolle P, Chambon P (1994) Genetic analysis of RXRα developmental function: convergence of RXR and RAR signalling pathways in heart and eye morphogenesis. Cell 78:987–1003

    PubMed  CAS  Google Scholar 

  • Kastner P, Mark M, Chambon P (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83:859–869

    PubMed  CAS  Google Scholar 

  • Kelley MW, Turner JK, Reh TA (1994) Retinoic acid promotes differentiation of photoreceptors in vitro. Development 120:2091–2102

    PubMed  CAS  Google Scholar 

  • Kelley MW, Xu X-M, Wagner MA, Warchol ME, Corwin JT (1993) The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development 119:1041–1053

    PubMed  CAS  Google Scholar 

  • Kennedy TE, Serafini T, de la Torre J, Tessier-Lavigne M (1994) Netrins are diffusable chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78:425–435

    PubMed  CAS  Google Scholar 

  • Kessel M (1993) Reversal of axonal pathways from rhombomere 3 correlates with extra Hox expression domains. Neuron 10:379–393

    PubMed  CAS  Google Scholar 

  • Krauss JK, Mohandjer M, Wakhloo AK, Mundinger F (1991) Dystonia and akinesia due to pallidoputaminal lesions after disulphiram treatment. Movement Disorders 6:166–170

    PubMed  CAS  Google Scholar 

  • Kuff El, Fewell JW (1980) Induction of neural-like andacetylcholinesterase activity in cultures of F9 teratocarcinoma cells treated with retinoic acid and dibutyryl cyclic adenosine monophosphate. Dev Biol 77:103–115

    PubMed  CAS  Google Scholar 

  • LaMantia AS, Colbert MC, Linney E (1993) Retinoic acid induction and regional differentiation prefigure olfactory pathway formation in the mammalian forebrain. Neuron 10:1035–1048

    PubMed  CAS  Google Scholar 

  • Lammer EJ, Armstrong DL (1992) Malformations of hindbrain structures among humans exposed to isotretinoin (13-cis-retinoic acid) during early embryogenesis. In: Morriss-Kay G (ed) Retinoids in normal and development and teratogenesis,Oxford University Press, Oxford, p 281

    Google Scholar 

  • Lammer EJ, Chen DT, Hoar RM, Agnish AD, Benke PJ, Braun JT, Curry CJ, Fernhoff PM, Grix AW, Lott IT, Richard JM, Sun SC (1985) Retinoic acid embryopathy. New Eng. J Med 313:837–841

    CAS  Google Scholar 

  • Lampron C, Rochette-Egly C, Gorry P, Dolle P, Mark M, Lufkin T, LeMeur M, Chambon P (1995) Mice deficient in cellular retinoic acid binding protein II (CRABP II) or in both CRABP I and CRABPII are essentially normal. Development 121:539–548

    PubMed  CAS  Google Scholar 

  • Langman J, Welch GW (1967) Effect of vitamin A on development of the central nervous system. J Comp Neurol 128:1–16

    Google Scholar 

  • Langston AW, Gudas LJ (1992) Identification of a retinoic acid responsive enhancer 3’ of the murine homeobox gene Hox-1.6. Mech of Dev 38:217–228

    CAS  Google Scholar 

  • Laplane D, Attal N, Sauron B, de Billy A, Dubois B (1992) Lesions of basal ganglia due to disulphiram neurotoxicity. J Neurol Neurosurg Psychiatry 55:925–929

    PubMed  CAS  Google Scholar 

  • Le Douarin NM (1982) The NEURAL Crest. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee YM, Osumi-Yamashita N, Ninomiya Y, Moon CK, Eriksson U, Eto K (1995) Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells. Development 121:825–837

    PubMed  CAS  Google Scholar 

  • Lefebvre PP, Malgrange B, Staecker H, Moonen G, van de Water TR (1993) Retinoic acid stimulates regeneration of mammalian auditory hair cells. Science 260:692–695

    PubMed  CAS  Google Scholar 

  • Leonard L, Horton C, Maden M, Pizzey JA (1995) Anteriorization of CRABP-I expression by retinoic acid in the developing mouse central nervous system and its relationship to teratogenesis. Dev Biol 168:514–528

    PubMed  CAS  Google Scholar 

  • Leonard LA (1995) Cellular retinoic acid binding proteins in normal vertebrate development and retinoic acid-induced teratogenesis. PhD Thesis, University of London

    Google Scholar 

  • Leroy P, De Robertis EM (1992) Effects of lithium chloride and retinoic acid on the expression of genes from the Xenopus Hox 2 complex. Dev Dynam. 194:21–32

    CAS  Google Scholar 

  • Levine JM, Flynn P (1986) Cell surface changes accompanying the neural differentiation of an embryonal carcinoma cell line. J Neurosci 6:374–3384

    Google Scholar 

  • Liesi P, Rechardt L, Wartiovaara J (1983) Nerve growth factor induced adrenergic neuronal differentiation in F9 teratocarcinoma cells. Nature 306:265–267

    PubMed  CAS  Google Scholar 

  • Lohnes D, Mark M, Mendelsohn C, Dolle P, Dierich A, Gorry P, Gansmuller A, Chambon P (1994) Function of the retinoic acid receptors (RARs) during development (I) Craniofacial and skeletal abnormalities in RAR double mutants. Development 120:2723–2748

    PubMed  CAS  Google Scholar 

  • Lopez SL, Carrasco AE (1992) Retinoic acid induces changes in the localization of homeobox proteins in the antero-posterior axis of Xenopus laevis embryos. Mech of Dev 36:153–164

    CAS  Google Scholar 

  • Lopez SL, Dono R, Zeller R, Carrasco AE (1995) Differential effects of retinoic acid and a retinoid antagonist on the spatial distribution of the homeoprotein Hoxb-7 in vertebrate embryos. Dev Dynam 204:457–471

    CAS  Google Scholar 

  • Luo J, Pasceri P, Conlon RA, Rossant J, Giguere V (1995) Mice lacking all isoforms of retinoic acid receptor ß develop normally and are susceptible to the teratogenic effects of retinoic acid. Mech of Dev 53:61–71

    CAS  Google Scholar 

  • Lyn S, Giguere V (1994) Localization of CRABP I and CRABP II mRNA in the early mouse embryo by whole-mount in situ hybridisation: implications for teratogenesis and neural development. Dev Dynam 199:280–291

    CAS  Google Scholar 

  • Lynch SA, Brugge JS, Levine JM (1986) Induction of altered c-src product during neuronal differentiation of embryonal carcinoma cells. Science 234:873–876

    PubMed  CAS  Google Scholar 

  • MacPherson PA, Jones S, Pawson PA, Marshall KC, McBurney MW (1997) P19 cells differentiate into glutaminergic and glutamate-responsive neurons in vitro. Neurosci 80:487–499

    CAS  Google Scholar 

  • Maden M, Holder N (1991) The involvement of retinoic acid in the development of the vertebrate central nervous system. Development (Suppl) 2:87–94

    Google Scholar 

  • Maden M, Holder N (1992) Retinoic acid and development of the central nervous system. BioEssays 14:431–438

    PubMed  CAS  Google Scholar 

  • Maden M, Ong DE, Summerbell D, Chytil F (1989a) The role of retinoid-binding proteins in the generation of pattern in the developing limb, the regenerating limb and the nervous system. Development(Suppl):109–119

    Google Scholar 

  • Maden M, Ong DE, Summerbell D, Chytil F, Hirst EA (1989b) Cellular retinoic acidbinding protein and the role of retinoic acid in the development of the chick embryo. Dev Biol 135:124–132

    PubMed  CAS  Google Scholar 

  • Maden M, Ong DE, Chytil F (1990) Retinoid-binding protein distribution in the developing mammalian nervous system. Development 109:75–80

    PubMed  CAS  Google Scholar 

  • Maden M, Hunt P, Eriksson U, Kuriowa A, Krumlauf R, Summerbell D (1991) Retinoic acid-binding protein, rhombomeres and the neural crest. Development 111:35–44

    PubMed  CAS  Google Scholar 

  • Maden M, Gale E, Horton C, Smith JC (1992a) Retinoid-binding proteins in the developing vertebrate nervous system. In: Morriss-Kay G (ed) Retinoids in Normal Development and Teratogenesis. Oxford University Press Oxford p 119

    Google Scholar 

  • Maden M, Horton C, Graham A, Leonard L, Pizzey J, Siegenthaler G, Lumsden A, Eriksson U (1992b) Domains of cellular retinoic acid-binding protein I (CRABP I) expression in the hindbrain and neural crest of the mouse embryo. Mech of Dev 37:13–23

    CAS  Google Scholar 

  • Maden M, Gale E, Kostetskii I, Zile M (1996) Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Current Biol 6:417–426

    CAS  Google Scholar 

  • Maden M, Graham A, Gale E, Rollinson C, Zile M (1997) Positional apoptosis during vertebrate CNS development in the absence of endogenous retinoids. Development 124:2799–2805

    PubMed  CAS  Google Scholar 

  • Maden M, Gale E, Zile M (1998) The role of vitamin A in the development of the central nervous system. J Nutr 128:471S–475S

    PubMed  CAS  Google Scholar 

  • Manns M, Fritzsch B (1992) Retinoic acid affects the organization of reticulospinal neurons in developing Xenopus. Neurosci Let 139:253–256

    CAS  Google Scholar 

  • Mark M, Lufkin T, Vonesch J-L, Ruberte E, Olivo J-C, Dolle P, Gorry P, Lumsden A, Chambon P (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119:319–338

    PubMed  CAS  Google Scholar 

  • Marsh-Armstrong N, McCaffery P, Gilbert W, Dowling JE, Drager UC (1994) Retinoic acid is necessary for development of the ventral retina in zebrafish. Proc Natl Acad Sci USA 91:7286–7290

    PubMed  CAS  Google Scholar 

  • Marsh-Armstrong N, McCaffery P, Hyatt G, Alonso L, Dowling JE, Gilbert W, Drager UC (1995) Retinoic acid in the anteroposterior patterning of the zebrafish trunk. Roux’s Arch. Dev Biol 205:103–113

    CAS  Google Scholar 

  • Marshall H, Studer M, Popperl H, Aparicio S, Kuriowa A, Brenner S, Krumlauf R (1994) A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370:567–571

    PubMed  CAS  Google Scholar 

  • Marshall H, Nonchev S, Sham MH, Muchamore I, Lumsden A, Krumlauf R (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 360:737–741

    PubMed  CAS  Google Scholar 

  • Matsuoka I, Mizuno N, Kurihara K (1989) Cholinergic differentiation of clonal rat pheochromocytoma cells (PC12) induced by retinoic acid: increase of choline acteyltransferase activity and decrease of tyrosine hydroxylase. Brain Res 502:53–60

    PubMed  CAS  Google Scholar 

  • McBurney MW, Jones-Villeneuve EMV, Edwards MKS, Anderson PJ (1982) Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299:165–167

    PubMed  CAS  Google Scholar 

  • McBurney MW, Reuhl KR, Ally AI, Nasipuri S, Bell JC, Craig J (1988) Differentiation and maturation of embryonal carcinoma-derived neurons in cell culture. J Neurosci 8:1063–1073

    PubMed  CAS  Google Scholar 

  • McCaffery P, Drager UC (1994a) High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc Natl Acad Sci USA 91:7772–7776

    PubMed  CAS  Google Scholar 

  • McCaffery P, Drager UC (1994b) Hot spots of retinoic acid synthesis in the developing spinal cord. Proc Natl Acad Sci USA 91:7194–7197

    PubMed  CAS  Google Scholar 

  • McCaffery P, Drager UC (1995) Retinoic acid synthesizing enzymes in the embryonic and adult vertebrate. In: Weiner H, et al (eds) Enzymology and molecular biology of carbonyl metabolism. Plenum New York, p 173

    Google Scholar 

  • McCaffery P, Lee M-O, Wagner MA, Sladek NE, Drager U (1992) Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina. Development 115:371–382

    PubMed  CAS  Google Scholar 

  • McCaffery P, Posch KC, Napoli JL, Gudas L, Drager UC (1993) Changing patterns of the retinoic acid system in the developing retina. Dev Biol 158:390–399

    CAS  Google Scholar 

  • McCaffery P, Tempst P, Lara G, Drager UC (1991) Aldehyde dehydrogenase is a positional marker in the retina. Development 112:693–702

    PubMed  CAS  Google Scholar 

  • McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J (1994) The deaf Kreisler mouse: a hindbrain segmentation mutant. Development 120:2199–2211

    PubMed  CAS  Google Scholar 

  • Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994) Function of the retinoic acid receptors (RARs) during development (II) Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120:2749–2771

    PubMed  CAS  Google Scholar 

  • Mendelsohn C, Ruberte E, LeMeur M, Morriss-Kay G, Chambon P (1991) Developmental analysis of the retinoic acid-inducible RAR-ß2 promoter in trans genic animals. Development 113:723–734

    PubMed  CAS  Google Scholar 

  • Minucci S, Saint-Jeannet J-P, Toyama R, Scita G, DeLuca LM, Taira M, Levin AA, Ozato K, Dawid IB (1996) Retinoid X receptor-selective ligands produce malformations in Xenopus embryos. Proc Natl Acad Sci USA 93:1803–1807

    PubMed  CAS  Google Scholar 

  • Momoi MY, Hayasaka M, Hanaoka K, Momoi T (1989) The expression of cellular retinoic acid binding protein CRABP in the neural tube and notochord of mouse embryo. Proc Japan Acad 65:9–12

    CAS  Google Scholar 

  • Moro Balbas JA, Gato A, Alonso Revuelta MI, Pastor JF, Represa JJ, Barbosa E (1993) Retinoic acid induces changes in the rhombencephalic neural crest cells migration and extracellular matrix composition in chick embryos. Teratology 48:197–206

    PubMed  CAS  Google Scholar 

  • Morriss GM (1972) Morphogenesis of the malformations induced in rat embryos by maternal hypervitaminosis A. J Anat 113:241–250

    PubMed  CAS  Google Scholar 

  • Morriss GM, Thorogood PV (1978) An approach to cranial neural crest migration and differentiation in mammalian embryos. In: Johnson M (ed) Development in Mammals. p 363

    Google Scholar 

  • Morriss-Kay GM, Murphy P, Hill RE, Davidson DR (1991) Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the hindbrain of mouse embryos. EMBO J 10:2985–2995

    PubMed  CAS  Google Scholar 

  • Muramatsu H, Muramatsu T (1991) Purification of recombinant midkine and examination of its biological activities: functional comparison of new heparin binding factors. Biochem Biophys Res Comm 177:652–658

    PubMed  CAS  Google Scholar 

  • Muramatsu H, Shirahama H, Yonezawa S, Maruta H, Muramatsu T (1993) Midkine, a retinoic acid-inducible growth/differentiation factor: immunochemical evidence for the function and distribution. Dev Biol 159:392–402

    PubMed  CAS  Google Scholar 

  • Muramatsu T (1993) Midkine (MK), the product of a retinoic acid responsive gene, and pleitrophin constitute a new protein family regulating growth and differentiation. Int J Dev Biol 37:183–188

    PubMed  CAS  Google Scholar 

  • Muto K, Noji S, Nohno T, Koyama E, Myokai F, Nishijima K, Saito T, Taniguchi S (1991) Involvement of retinoic acid and its receptor ßin differentiation of motoneurons in chick spinal cord. Neurosci Lett 129:39–42

    PubMed  CAS  Google Scholar 

  • Niederreither K, McCaffery P, Drager UC, Chambon P, Dolle P (1997) Restricted expression and retinoic acid-induced downregulation of the retinal dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech of Dev 62:67–78

    CAS  Google Scholar 

  • Noll E, Miller RH (1994) Regulation of oligodendrocyte differentiation: a role for retinoic acid in the spinal cord. Development 120:649–660

    PubMed  CAS  Google Scholar 

  • Nurcome V, Fraser N, Herlaar E, Heath JK (1992) MK: a pluripotential embryonic stem-cell-derived neuroregulatory factor. Development 116:1175–1183

    Google Scholar 

  • Osumi-Yamashita N, Noji S, Nohno T, Koyama E, Doi H, Eto K, Taniguchi S (1990) Expression of retinoic acid receptor genes in neural crest-derived cells during mouse facial development. FEBS Lett 264:71–74

    PubMed  CAS  Google Scholar 

  • Pahlman S, Ruusala AI, Abrahamson L, Mattsson MEK, Esscher T (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbol ester-induced differentiation. Cell. Differentiation 14:135–144

    PubMed  CAS  Google Scholar 

  • Pannese M, Polo C, Andreazzoli M, Vignali, R, Kablar B, Barsacchi G, Boncinelli E (1995) The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121:707–720

    PubMed  CAS  Google Scholar 

  • Papalopulu N, Clarke JDW, Bradley L, Wilkinson D, Krumlauf R, Holder N (1991) Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113:1145–1158

    PubMed  CAS  Google Scholar 

  • Paul G, Davies AM (1995) Trigeminal sensory neurons require extrinsic signals to switch neurotrophin dependence during the early stages of target field innervation. Dev Biol 171:590–605

    PubMed  CAS  Google Scholar 

  • Perez-Castro AV, Toth-Rogler LE, Wei LN, Nguyen-Huu MC (1989) Spatial and temporal pattern of expression of the cellular retinoic acid-binding protein and the cellular retinol-binding protein during mouse embryogenesis. Proc Natl Acad Sci USA 86:8813–8817

    PubMed  CAS  Google Scholar 

  • Pfeffer PL, De Robertis EM (1994) Regional specificity of RARγisoforms in Xenopus development. Mech of Dev 45:147–153

    CAS  Google Scholar 

  • Phillip J, Mitchell PJ, Malipiero U, Fontana A (1994) Cell type-specific regulation of expression of transcription factor AP-2 in neuroectodermal cells. Dev Biol 165:602–614

    Google Scholar 

  • Placzek M, Tessier-Lavigne M, Jessell T, Dodd J (1990) Orientation of commissural axons in vitro in response to a floor plate-derived chemoattractant. Development 110:19–30

    PubMed  CAS  Google Scholar 

  • Pleasure SJ, Page C, Lee VM-Y (1992) Pure, postmitotic, polarized human neurons derived from NTera2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 12:1802–1815

    PubMed  CAS  Google Scholar 

  • Plum LA, Clagett-Dame M (1996) All-trans retinoic acid stimulates and maintains neurite outgrowth in nerve growth factor-supported developing chick embryonic sympathetic neurons. Dev Dynam 205:52–63

    CAS  Google Scholar 

  • Pratt RM, Goulding EH, Abbott BD (1987) Retinoic acid inhibits migration of cranial neural crest cells in the cultured mouse embryo. J Craniofac Gen. Dev Biol 7:205–217

    PubMed  CAS  Google Scholar 

  • Quinn SDP, De Boni U (1991) Enhanced neuronal regeneration by retinoic acid of murine dorsal root ganglia and of fetal murine and human spinal cord in vitro. In Vitro Cell. Dev Biol 27 a:55–62

    PubMed  CAS  Google Scholar 

  • Raulais D, Lagente-Chevallier O, Guettet C, Duprez D, Courtois Y, Vigny M (1991) A new heparin binding protein regulate by retinoic acid from chick embryo. Biochem Biophys Res Comm 174:708–715

    PubMed  CAS  Google Scholar 

  • Repa JJ, Plum LA, Tadikonda PK, Clagett-Dame M (1996) All-trans 3,4-didehydroretinoic acid equals all-transretinoic acid in support of chick neuronal development. FASEB J 10:1078–1084

    PubMed  CAS  Google Scholar 

  • Represa J, Sanchez A, Miner C, Lewis J, Giraldez F (1990) Retinoic acid modulation of the early development of the inner ear is associated with the control of c-fos expression. Development 110:1081–1090

    PubMed  CAS  Google Scholar 

  • Reynolds K, Mezey E, Zimmer A (1991) Activity of the ß-retinoic acid receptor promoter in transgenic mice. Mech of Dev 36:15–29

    CAS  Google Scholar 

  • Rockwood JM, Maxwell GD (1996a) An analysis of the effects of retinoic acid and other retinoids on the development of adrenergic cells from the avian neural crest. Exp Cell Res 223:250–258

    PubMed  CAS  Google Scholar 

  • Rockwood JM, Maxwell GD (1996b) Thyroid hormone decreases the number of adrenergic cells that develop in neural crest cultures and can inhibit the stimulatory action of retinoic acid. Dev. Brain Res 96:184–191

    CAS  Google Scholar 

  • Rodriguez-Tebar A, Rohrer H (1991) Retinoic acid induces NGF-dependent survival response and high-affinity NGF receptors in immature chick sympathetic neurons. Development 112:813–820

    PubMed  CAS  Google Scholar 

  • Rosa FW, Wilk AL, Kelsey FO (1986) Teratogen update: vitamin A congeners. Teratology 33:355–364

    PubMed  CAS  Google Scholar 

  • Rossant J, Zirngibl R, Cado D, Shago M, Giguere V (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5:1333–1344

    PubMed  CAS  Google Scholar 

  • Rossino P, Defillippi P, Silengo L, Tarone G (1991) Up-regulation of the integrin a1/b1 in human neuroblastoma cells differentiated by retinoic acid: correlation with increased neurite outgrowth responses to laminin. Cell Reg 2:1021–1033

    CAS  Google Scholar 

  • Rowe A, Eager NSC, Brickell PM (1991) A member of the RXR nuclear receptor family is expressed in neural-crest-derived cells of the developing chick peripheral nervous system. Development 111:771–778

    PubMed  CAS  Google Scholar 

  • Rowe A, Richman JM, Brickell PM (1992) Development of the spatial pattern of retinoic acid receptor-ß transcripts in embryonic chick facial primordia. Development 114:805–813

    PubMed  CAS  Google Scholar 

  • Ruberte E, Dolle P, Chambon P, Morriss-Kay G (1991) Retinoic acid receptors and cellular retinoid binding proteins. II Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111:45–60

    PubMed  CAS  Google Scholar 

  • Ruberte E, Dolle P, Krust A, Zelent A, Morriss-Kay G, Chambon P (1990) Specific spatial and temporal distribution of retinoic acid receptor gamma transcripts during mouse embryogenesis. Development 108:213–222

    PubMed  CAS  Google Scholar 

  • Ruberte E, Friederich V, Morriss-Kay G, Chambon P (1992) Differential distribution patterns of CRABP I and CRABP II transcripts during mouse embryogenesis. Development 115:973–987

    PubMed  CAS  Google Scholar 

  • Ruberte E, Friederich V, Chambon P, Morriss-Kay G (1993) Retinoic acid receptors and cellular retinoid binding proteins. III Their differential transcript distribution during mouse nervous system development. Development 118:267–282

    PubMed  CAS  Google Scholar 

  • Ruiz i Altaba A, Jessell T (1991) Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev 5:175–187

    PubMed  CAS  Google Scholar 

  • Ruiz i Altaba A, Jessell TM (1991) Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112:945–958

    PubMed  CAS  Google Scholar 

  • Schuh TJ, Hall BL, Kraft JC, Privalsky ML, Kimelman D (1993) v-erbA and citral reduce the teratogenic effects of all-trans-retinoic acid and retinol, respectively, in Xenopus embryogenesis. Development 119:785–798

    PubMed  CAS  Google Scholar 

  • Scott WJ, Walter R, Tzimas G, Sass JO, Nau H, Collins MD (1994) Endogenous status of retinoids and their cytosolic binding proteins and limb buds of chick vs mouse embryos. Dev Biol 165:397–409

    PubMed  CAS  Google Scholar 

  • Seegmiller RE, Harris C, Luchtel DL, Juchau MR (1991) Morphological differences elicited by two weak acids, retinoic and valproic, in rat embryos grown in vitro. Teratology 43:133–150

    PubMed  CAS  Google Scholar 

  • Sharma S, Notter MFD (1988) Characterisation of a neurotransmitter phenotype during neuronal differentiation of embryonal carcinoma cells. Dev Biol 125:246–254

    PubMed  CAS  Google Scholar 

  • Sharpe CR (1991) Retinoic acid can mimic endogenous signals involved in transformation of the Xenopus nervous system. Neuron 7:239–247

    PubMed  CAS  Google Scholar 

  • Sharpe CR, Goldstone K (1997) Retinoid receptors promote primary neurogenesis in Xenopus. Development 124:515–523

    PubMed  CAS  Google Scholar 

  • Shea TB, Fischer I, Sapirstein VS (1985) Effect of retinoic acid on growth and morphological differentiation of mouse NB2a neuroblastoma cells in culture. Dev. Brain Res 21:307–314

    CAS  Google Scholar 

  • Shen S, van den Brink CE, Kruijer W, van der Saag PT (1992) Embryonic stem cells stably transfected with mRARß 2-lacZ exhibit specific expression in chimeric embryos. Int J Dev Biol 36:465–476

    PubMed  CAS  Google Scholar 

  • Shenfelt RE (1972) Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage at treatment. Teratology 5:103–118

    Google Scholar 

  • Shiga T, Guar VP, Yamaguchi K, Oppenheim RW (1995) The development of interneurons in the chick embryo spinal cord following in vivo treatment with retinoic acid. J Comp Neurol 360:463–474

    PubMed  CAS  Google Scholar 

  • Sidell N (1982) Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J Natl Cancer Inst 68:589–596

    PubMed  CAS  Google Scholar 

  • Sidell N, Altman A, Haussler MR, Seeger RC (1983) Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp Cell Res 148:21–30

    PubMed  CAS  Google Scholar 

  • Sidell N, Lucas CA, Kreutzberg GW (1984) Regulation of acetylcholinesterase activity by retinoic acid in a human neuroblastoma cell line. Exp Cell Res 155:305–309

    PubMed  CAS  Google Scholar 

  • Simeone A, Avantaggiato V, Moroni MC, Mavilio F, Arra C, Cotelli F, Nigro V, Acampora D (1995) Retinoic acid induces stage-specific antero-posterior trans formationof rostral central nervous system. Mech of Dev 51:83–98

    CAS  Google Scholar 

  • Sive HL, Cheng PF (1991) Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev 5:1321–1332

    PubMed  CAS  Google Scholar 

  • Sive HL, Draper BW, Harland RM, Weintrub H (1990) Identification of a retinoic acidsensitive period during primary axis formation in Xenopus laevis. Genes Dev 4:932–942

    PubMed  CAS  Google Scholar 

  • Smith SM (1994) Retinoic acid receptor isoform ß2 is an early marker for alimentary tract and central nervous system positional specification in the chicken. Dev Dynam 200:14–25

    CAS  Google Scholar 

  • Smith SM, Eichele G (1991) Temporal and regional differences in the expression pattern of distinct retinoic acid receptor-ß transcripts in the chick embryo. Development 111:245–252

    PubMed  CAS  Google Scholar 

  • Smith-Thomas L, Lott I, Bronner-Fraser M (1987) Effects of isotretinoin on the behavior of neural crest cells in vitro. Dev Biol 123:276–281

    PubMed  CAS  Google Scholar 

  • Smolich BD, Papkoff J (1994) Regulated expression of Wnt family members during neuroectodermal differentiation of P19 embryonal carcinoma cells: over expression of Wnt-1 perturbs normal differentiation-specific properties. Dev Biol 166:300–310

    PubMed  CAS  Google Scholar 

  • Staines WA, Morassutti DJ, Reuhl KR, Ally AI, McBurney MW (1994) Neurons derived from P19 embryonal carcinoma cells have varied morphologies and neurotransmitters. Neurosci 58:735–751

    CAS  Google Scholar 

  • Stenkamp DL, Gregory JK, Adler R (1993) Retinoid effects in purified cultures of chick embryo retina neurons and photoreceptors. Invest Ophthalmol Vis Sci 34:2425–2436

    PubMed  CAS  Google Scholar 

  • Studer M, Popperl H, Marshall H, Kuriowa A, Krumlauf R (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265:1728–1732

    PubMed  CAS  Google Scholar 

  • Sulik KK, Dehart DB, Rogers JM, Shernoff N (1995) Teratogenicity of low doses of all-trans retinoic acid in presomite mouse embryos. Teratology 51:398–403

    PubMed  CAS  Google Scholar 

  • Sundin O, Eichele G (1992) An early marker of axial pattern in the chick embryo and its respecification by retinoic acid. Development 114:841–852

    PubMed  CAS  Google Scholar 

  • Thaller C, Eichele G (1990) Isolation of 3,4-didehydroretinoic acid, a novel morphogenetic signal in the chick wing bud. Nature 345:815–819

    PubMed  CAS  Google Scholar 

  • Thiele CJ, Cohen PS, Israel MA (1988) Regulation of c-myb expression in human neuroblastoma cells during retinoic acid-induced differentiation. Mol Cell Biol 8:1677–1683

    PubMed  CAS  Google Scholar 

  • Thiele CJ, Reynolds CP, Israel MA (1985) Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313:404–406

    PubMed  CAS  Google Scholar 

  • Thompson JN (1969) Vitamin A in development of the embryo. Am J Clin Nutr 22:1063–1069

    PubMed  CAS  Google Scholar 

  • Thompson JN, Howell JM, Pitt GAJ, McLaughlin CI (1969) The biological activity of retinoic acid in the domestic fowl and the effects of vitamin A deficiency on the chick embryo. Br J Nutr 23:471–490

    PubMed  CAS  Google Scholar 

  • Thompson S, Stern PL, Webb M, Walsh FS, Engstrom W, Evans EP, Shi W-K, Hopkins B, Graham CF (1984) Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J Cell Sci 72:37–64

    PubMed  CAS  Google Scholar 

  • Thorogood P, Smith L, Nicol A, McGinty R, Garrod D (1982) Effects of vitamin A on the behaviour of migratory neural crest cells in vitro. J Cell Sci 57:331–350

    PubMed  CAS  Google Scholar 

  • Tini M, Otulakowski G, Breitman ML, Tsui L-C, Giguere V (1993) An everted repeat mediates retinoic acid induction of the ΓF-crystallin gene: evidence of a direct role for retinoids in lens development. Genes Dev 7:295–307

    PubMed  CAS  Google Scholar 

  • Turetsky DM, Huettner JE, Gottlieb DI, Goldberg MP, Choi DW (1993) Glutamate receptor-mediated surrents and toxicity in embryonal carcinoma cells. J Neurobiol 24:1157–1169

    PubMed  CAS  Google Scholar 

  • Vaessen M-J, Kootwijk E, Mummery C, Hilkens J, Bootsma D, van Kessel AD (1989) Preferential expression of cellular retinoic acid binding protein in a subpopulation of neural cells in the developing mouse embryo. Differentiation 40:99–105

    PubMed  CAS  Google Scholar 

  • Vaessen M-J, Meijers JHC, Bootsma D, van Kessel AD (1990) The cellular retinoic acidbinding protein is expressed in tissues associated with retinoic acid-induced malformations. Development 110:371–378

    PubMed  CAS  Google Scholar 

  • Vallari RC, Pietruszko R (1982) Human aldehyde dehydrogenase: mechanism of inhibition by disulphiram. Science 216:637–639

    PubMed  CAS  Google Scholar 

  • van den Eijnden-van Raaij AJM, van Achterberg TAE, van der Kruijssen CMM, Piersma AH, Huylebroeck D, de Laat SW, Mummery CL (1991) Differentiation of aggregated murine P19 embryonal carcinoma cells is induced by a novel visceral endoderm-specific FGF-like factor and inhibited by activin A. Mech of Dev 33:157–166

    Google Scholar 

  • Ved HS, Pieringer RA (1993) Regulation of neuronal differentiation by retinoic acid alone and in cooperation with thyroid hormone or hydrocortisone. Dev Neurosci 15:49–53

    PubMed  CAS  Google Scholar 

  • Wagner M, Han B, Jessell TM (1992) Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116:55–66

    PubMed  CAS  Google Scholar 

  • Wagner M, Thaller C, Jessell TM, Eichele G (1990) Polarizing activity and retinoid synthesis in the floor plate of the neural tube. Nature 345:819–822

    PubMed  CAS  Google Scholar 

  • Wang S-Y, LaRosa GJ, Gudas LJ (1985) Molecular cloning of gene sequences transcriptionally regulated by retinoic acid and dibutyryl cyclic AMP in cultured mouse teratocarcinoma cells. Dev Biol 107:75–86

    PubMed  CAS  Google Scholar 

  • Warkany J (1945) Manifestations of prenatal nutritional deficiency. Vitamins Hormones 3:73–103

    CAS  Google Scholar 

  • Webster WS, Johnston MC, Lammer EJ, Sulik K (1986) Isotretinoin embryopathy and the cranial neural crest: an in vivo and in vitro study. J Craniofac Gen. Dev Biol 6:211–222

    CAS  Google Scholar 

  • Wilson JG, Roth CB, Warkany J (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am. J Anat 92:189–217

    CAS  Google Scholar 

  • Wion D, Houlgatte R, Barbot N, Barrand P, Dicou E, Brachet P (1987) Retinoic acid increases the expression of NGF gene in mouse L cells. Biochem Biophys Res Comm 149:510–514

    PubMed  CAS  Google Scholar 

  • Wood H, Pall G, Morriss-Kay G (1994) Exposure to retinoic acid before or after the onset of somitogenesis reveals separate effects on rhombomeric segmentation and 3’ HoxB gene expression domains. Development 120:2279–2285

    PubMed  CAS  Google Scholar 

  • Wuarin L, Sidell N (1991) Differential susceptibilities of spinal cord neurons to retinoic acid-induced survival and differentiation. Dev Biol 144:429–435

    PubMed  CAS  Google Scholar 

  • Wuarin L, Sidell N, De Vellis J (1990) Retinoids increase perinatal spinal cord neuronal survival and astroglial differentiation. Int J Devel Neurosci 8:317–326

    CAS  Google Scholar 

  • Yamamoto M, McCaffery P, Drager UC (1996) Influence of the choroid plexus on cerebellar development: analysis of retinoic acid synthesis. Dev. Brain Res 93:182–190

    CAS  Google Scholar 

  • Yasuda Y, Okamoto M, Konishi H, Matsuo T Kihara T, Tanimura T (1986) Developmental anomalies induced by all-trans retinoic acid in fetal mice: I. Macroscopic findings. Teratology 34:37–49

    PubMed  CAS  Google Scholar 

  • Younkin DP, Tang C-M, Hardy M, Reddy UR, Shi Q-Y, Pleasure SJ, Lee VM, Pleasure D (1993) Inducible expression of neuronal glutamate receptor channels in the NT2 human cell line. Proc Natl Acad Sci USA 90:2174–2178

    PubMed  CAS  Google Scholar 

  • Zgombic-Knight M, Ang HL, Foglio MH, Duester G (1995) Cloning of the mouse class IV alcohol dehydrogenase (retinol dehydrogenase) cDNA and tissue-specific expression patterns of the murine ADH gene family. J Biol Chem 270:10868–19877

    PubMed  CAS  Google Scholar 

  • Zhang M, Kim H-J, Marshall H, Gendron-Maguire M, Lucas DA, Baron A, Gudas LJ, Gridley T, Krumlauf R, Grippo JF (1994) Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 120:2431–2442

    PubMed  CAS  Google Scholar 

  • Zhang Z, Balmer JE, Lovlie A, Fromm SH, Blomhoff R (1996) Specific teratogenic effects of different retinoic acid isomers and analogs in the developing anterior central nervous system of zebrafish. Dev Dynam 206:73–86

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maden, M. (1999). Retinoids in Neural Development. In: Nau, H., Blaner, W.S. (eds) Retinoids. Handbook of Experimental Pharmacology, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58483-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58483-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63614-1

  • Online ISBN: 978-3-642-58483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics