Skip to main content

Physical-Chemical Properties and Action of Retinoids

  • Chapter
Retinoids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 139))

Abstract

This chapter considers how the physical-chemical properties of retinoids and the characteristics of their interactions with the various environments in which they are distributed in vivo affect their biological functions. The discussion focuses on current knowledge on the equilibrium and kinetic parameters that govern the behavior of retinoids within aqueous phases, biological membranes, and binding sites of proteins. The possible implications of this information for the molecular mechanisms underlying some aspects of retinoid biology are then considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allenby G, Bocquel MT, Saunders M, Kazmer S, Speck J, Rosenberger M, Lovey A, Kastner P, Grippo JF, Chambon P, Levin AA (1993) Retinoic acid receptors and retinoid x receptors interactions with endogenous retinoic acids. Proc Natl Acad Sci USA 90:30–34

    Article  PubMed  CAS  Google Scholar 

  • Bavik CO, Eriksson U, Allen RA, Peterson PA (1991) Identification and partial characterization of a retinal pigment epithelial membrane receptor for plasma retinol-binding protein. J Biol Chem 266:14978–14985

    PubMed  CAS  Google Scholar 

  • Bavik CO, Levy F, Hellman U, Wernstedt C, Eriksson U (1993) The retinal pigment epithelial membrane receptor for plasma retinol-binding protein, isolation and cDNA cloning of the 63-KD protein. J Biol Chem 268:20540–20546

    PubMed  CAS  Google Scholar 

  • Bavik CO, Peterson PA, Eriksson U (1995) Retinol-binding protein mediates uptake of retinol to cultured human keratinocytes. Exp Cell Res 216:358–362

    Article  PubMed  CAS  Google Scholar 

  • Bazan NG, Reddy TS, Redmond TM, Wiggert B, Chader GJ (1985) Endogenous fatty acids are covalently and noncovalently bound to interphotoreceptor retinoid binding protein in monkey retina. J Biol Chem 260:13677–13680

    PubMed  CAS  Google Scholar 

  • Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375:377–383

    Article  PubMed  CAS  Google Scholar 

  • Cabrai DJ, Hamilton JA, Small DM (1986) The ionization behavior of bile acids in different aqueous environments. J Lipid Res 27:334–343

    Google Scholar 

  • Carlson A, Bok D (1992) Promotion of the release of 11-cis-retinal from cultured retinal pigment epithelium by interphotoreceptor retinoid binding protein Biochemistry 31:9056–9062

    CAS  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    PubMed  CAS  Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wiegand RE, Koutz CA, Anderson RE (1992) Docosahexaenoic acid increases in frog retinal pigment epithelium following rod photoreceptor shedding, Exp Eye Res 55:93–100

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Noy N (1994) Retinoid specificity of interphotoreceptor retinoid-binding protein. Biochemistry 33:10658–10665

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Saari JC, Noy N (1993) Studies on the interactions of all-trans-retinol and long-chain fatty acids with interphotoreceptor retinoid-binding protein. Biochemistry 32:11311–11318

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Houghton LA, Brenna JT, Noy N (1996) Docosahexaenoic acid modulates the interactions of the interphotoreceptor matrix retinoid-binding protein with 11-cis-retinal. J Biol Chem 271:20507–20515

    Article  PubMed  CAS  Google Scholar 

  • Chen Z-P, Iyer J, Bourguet W, Held P, Mioskowski C, Lebeau L, Noy N, Chambon P, Gronemeyer H (1998) Ligand and DNA-induced dissociation of RXR tetramers. J Mol Biol 275:55–65

    Article  PubMed  CAS  Google Scholar 

  • Cistola D P, Hamilton JA, Jackson D, Small DA (1988) Ionization and phase behavior of fatty acids in water application of the gibbs phase rule Biochemistry 27:1881–1888

    CAS  Google Scholar 

  • Cogan U, Kopelman M, Mokady S, Shinitzky M (1976) Binding affinities of retinol and related compounds to retinol-binding proteins. Eur J Biochemistry 65:71–78

    Article  CAS  Google Scholar 

  • Connors KA (1990) Chemical kinetics, the study of reaction rates in solution. VCH, New York

    Google Scholar 

  • Cook RP (1958) In: Cook RP (ed) Cholesterol: chemistry, biochemistry, and pathology. Academic, New York, p 145

    Google Scholar 

  • Creek KE, Silverman-Jones CS, De Luca LM (1989) Comparison of the uptake and metabolism of retinol delivered to primary mouse keratinocytes either free or bound to rat serum retinol-binding protein. J Invest Dermatol 92:283–289

    Article  PubMed  CAS  Google Scholar 

  • Crouch RK, Hazard ES, Lind T, Wiggert B, Chader G, Corson DW (1992) Interphotoreceptor retinoid-binding protein and α-tocopherol preserve the isomeric and oxidation state of retinol. Photochem Photobiol 56:251–255

    Article  PubMed  CAS  Google Scholar 

  • Daniels C, Noy N, Zakim D (1985) Rates of hydration of fatty acids bound to unil-amellar vesicles of phosphatidylcholine or to albumin. Biochemistry 24:3286–3292

    Article  PubMed  CAS  Google Scholar 

  • DeBoeck H, Zidovetzki R (1988) NMR study of the interactions of retinoids with phos-pholipid bilayers. Biochim Biophys Acta 946:244–252

    Article  PubMed  Google Scholar 

  • Dingle JT, Lucy JA (1965) Vitamin A, carotenoids and cell function, Biol Rev 40:422–461

    Article  PubMed  CAS  Google Scholar 

  • Dong D, RvvsKa S, Levinthal D, Noy N (1999) Distinct roles for CRABP-I and II in regulating retinoic acid signaling (submitted)

    Google Scholar 

  • Doody MC, Pownall HJ, Kao YJ, Smith LC (1980) Mechanism and kinetics of transfer of a fluorescent fatty acid between single-walled phosphatidylcholine vesicles. Biochemistry 19:108–116

    Article  PubMed  CAS  Google Scholar 

  • Duester G (1996) Involvement of alcohol dehydrogenase, short-chain dehydrogenase reductase, aldehyde dehydrogenase, and cytochrome P450 in the control of retinoid signaling by activation of retinoic acid synthesis. Biochemistry 35:12221–12227

    Article  PubMed  CAS  Google Scholar 

  • Durand B, Saunders M, Leroy P, Leid M, Chambon P (1992) All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71:73–85

    Article  PubMed  CAS  Google Scholar 

  • Fex G, Johannesson G (1987) Studies of the spontaneous transfer of retinol from the retinol retinol-binding protein complex to unilamellar liposomes. Biochim Biophys Acta 901:255–264

    Article  PubMed  CAS  Google Scholar 

  • Fex G, Johannesson G (1988) Retinol transfer across and between phospholipid bilayer membranes. Biochim Biophys Acta 944:249–255

    Article  PubMed  CAS  Google Scholar 

  • Flannery JG, O’Day W, Pfeffer BA, Horwitz J, Bok D (1990) Uptake processing and release of retinoids by cultured human retinal pigment epithelium. Exp Eye Res 51:717–728

    Article  PubMed  CAS  Google Scholar 

  • Fong SL, Liou GI, Landers RA, Alvarez RA, Bridges CD (1984) Purification and characterization of a retinol-binding glycoprotein synthesized and secreted by bovine neural retina. J Biol Chem 259:6534–6542

    PubMed  CAS  Google Scholar 

  • Glass CK, Rose DW, Rosenfeld MG (1997) Nuclear receptor coactivators. Curr Opin Cell Biol 9:222–232

    Article  PubMed  CAS  Google Scholar 

  • Grun F, Noy N, Hammerling U, Buck J (1996) Purification, cloning, and bacterial expression of retinol dehydratase from spodoptera frugiperda. J Biol Chem 271:16135–16138

    Article  PubMed  CAS  Google Scholar 

  • Gutknecht J (1988) Proton conductance caused by long-chain fatty acids in phospho-lipid bilayer membranes, J Membr Biol 106:83–93

    Article  PubMed  CAS  Google Scholar 

  • Hallenbeck PL, Marks MS, Lippoldt RE, Ozato K, Nikodem VM (1992) Het-erodimerization of thyroid hormone (TH) receptor with H-2RIIBP (RXR-beta) enhances DNA binding and TH-dependent transcriptional activation. Proc Natl Acad Sci USA 89:5572–5576

    Article  PubMed  CAS  Google Scholar 

  • Hamel CP, Tsilou E, Pfeffer BA, Hooks JJ, Detrick B, Redmond TM (1993) Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem 268:15751–15757

    PubMed  CAS  Google Scholar 

  • Harrison EH, Blaner WS, Goodman DS, Ross AC (1987) Subcellular localization of retinoids retinoid-binding proteins and acyl coenzyme a retinol acyltransferase in rat liver. J Lipid Res 28:973–981

    PubMed  CAS  Google Scholar 

  • Heller J (1975) The interactions of plasma retinol binding protein with its receptor: specific binding of bovine and human RBP to pigment epithelium cells from bovine eyes. J Biol Chem 250:3613–3619

    PubMed  CAS  Google Scholar 

  • Ho M-TP, Massey JB, Pownall HJ, Anderson RE, Hollyfield JG (1989) Mechanism of vitamin A movement between rod outer segments, interphotoreceptor retinoid-binding protein and liposomes. J Biol Chem 264:928–935

    PubMed  CAS  Google Scholar 

  • Hodam JR, Hilaire PS, Creek KE (1991) Comparison of the rate of uptake and biologic effects of retinol added to human keratinocytes either directly to the culture medium or bound to serum retinol-binding protein. J Invest Dermatol 97:298–304

    Article  PubMed  CAS  Google Scholar 

  • Hodam JR, Creek KE (1998) Comparison of the metabolism of retinol delivered to human keratinocytes either bound to serum retinol-binding protein or added directly to the culture medium. Exp Cell Res 238:257–264

    Article  PubMed  CAS  Google Scholar 

  • Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS, Tung L (1996) Nuclear receptor coactivators and corepressors. Mol Endocrinol 10:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki M, Rayborn ME, Tawara A, Hollyfield JG (1992) Proteoglycans in the mouse interphotoreceptor matrix. V. Distribution at the apical surface of the pigment epithelium before and after separation. Exp Eye Res 54:415–432

    Article  PubMed  CAS  Google Scholar 

  • Jones GJ, Crouch RK, Wiggert B, Cornwall MC, Chader GJ (1989) Retinoid requirements for recovery of sensitivity after visual pigment bleaching in isolated pho-toreceptors. Proc Natl Acad Sci USA 86:9606–9610

    Article  PubMed  CAS  Google Scholar 

  • Kamp F, Hamilton JA (1992) PH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc Natl Acad Sei USA 89:11367–11370

    Article  CAS  Google Scholar 

  • Kamp F, Zakim D, Zhang F, Noy N, Hamilton JA (1995) Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry 34:11928–11937

    Article  PubMed  CAS  Google Scholar 

  • Katakura Y, Totsuka M, Ametani A, Kaminogawa S (1994) Tryptophan-19 of beta-lactoglobulin, the only residue completely conserved in the lipocalin superfamily, is not essential for binding retinol, but relevant to stabilizing bound retinol and maintaining its structure. Biochim Biophys Acta 1207:58–67

    Article  PubMed  CAS  Google Scholar 

  • Kersten S, Pan L, Chambon P, Gronemeyer H, Noy N (1995a) Role of ligand in retinoid signaling: 9-cis-retinoic acid modulates the oligomeric state of the retinoid X receptor. Biochemistry 34:13717–13721

    Article  PubMed  CAS  Google Scholar 

  • Kersten S, Pan L, Noy N (1995b) On the role of ligand in retinoid signaling. Positive cooperativity in the interactions of 9-cis-retinoic acid with tetramers of the retinoid X receptor. Biochemistry 34:14263–14269

    Article  PubMed  CAS  Google Scholar 

  • Kersten S, Kelleher D, Chambon P, Gronemeyer H, Noy N (1995c) The retinoid X receptor forms tetramers in solution. Proc Natl Acad Sei USA 92:8645–8649

    Article  CAS  Google Scholar 

  • Kersten S, Dawson MI, Lewis BA, Noy N (1996) Individual subunits of heterodimers comprised of the retinoic acid-and retinoid X receptors interact with their ligands independently. Biochemistry 35:3816–3824

    Article  PubMed  CAS  Google Scholar 

  • Kersten S, Reczek PR, Noy N (1997) The tetramerization region of the retinoid X receptor is important for transcriptional activation by the receptor. J Biol Chem 272:29759–29768

    Article  PubMed  CAS  Google Scholar 

  • Kersten S, Dong D, Lee W-Y, Reczek PR, Noy N (1998) Auto-silencing by the retinoid X receptor. J Mol Biol 284:21–32

    Article  PubMed  CAS  Google Scholar 

  • Leid M, Kastner P, Chambon P (1992) Trends Biochem Sci 17:427–33

    Article  PubMed  CAS  Google Scholar 

  • Levin MS, Locke B, Yang NC, Li E, Gordon JI (1988) Comparison of the ligand binding properties of two homologous rat apocellular retinol-binding proteins expressed in E. coli. J Biol Chem 263:17715–17723

    PubMed  CAS  Google Scholar 

  • Li E, Qian S, Winter NS, d’Avignon A, Levin MS, Gordon JL (1991) Fluorine nuclear magnetic resonance analysis of the ligand binding properties of two homologous rat cellular retinol-binding proteins expressed in E. coli. J Biol Chem 266:3622–3629

    PubMed  CAS  Google Scholar 

  • Li CY, Zimmerman CL, Wiedmann TS (1996) Solubilization of retinoids by bile salt-phospholipid aggregates, Pharm Res 13:907–913

    Article  PubMed  CAS  Google Scholar 

  • MacDonald PN, Ong DE (1987) Binding specificities of cellular retinol-binding protein and cellular retinol-binding protein type II. J Biol Chem 262:10550–10556

    PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Umesono K, Evans MR (1994) In: The Retinoids, Biology, Chemistry, and Medicine pp 319–350, eds. Sporn MB, Roberts AB, Goodman DS, Raven, New York

    Google Scholar 

  • Matarese V, Lodish HF (1993) Specific uptake of retinol-binding protein by variant F9 cell lines. J Biol Chem 268:18859–18865

    PubMed  CAS  Google Scholar 

  • Napoli JL, Boerman MHEM, Chai X Zhai Y, Fiorella PD (1995) Enzymes and binding proteins affecting retinoic acid concentrations. J Steroid Biochem Mol Biol 53:497–502

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti A, Wong DJ, Kawase K, Gibson LH, Yang-Feng T, Richards JE, Thompson DA (1995) Molecular characterization of the human gene encoding an abundant 61 kDa protein specific to the retinal pigment epithelium. Hum Mol Gen 4:641–649

    Article  PubMed  CAS  Google Scholar 

  • Norris AW, Li E (1998) Fluorometric titration of the CRABPs, In: Methods in Molecular Biology, vol. 89, Retinoid Protocols, ed Redfern CPF, Humana, Totowa,New Jersey

    Google Scholar 

  • Noy N, and Xu Z-J (1990a) Kinetic parameters of the interactions of retinol with lipid bilayers. Biochemistry 29:3883–3888

    Article  PubMed  CAS  Google Scholar 

  • Noy N, and Xu Z-J (1990b) Thermodynamic parameters of the binding of retinol to binding proteins and to membranes. Biochemistry 29:3888–3892

    Article  PubMed  CAS  Google Scholar 

  • Noy N, and Xu Z-J (1990c) Interactions of retinol with binding proteins: Implications for the mechanism of uptake by cells. Biochemistry 29:3888–3892

    Article  PubMed  CAS  Google Scholar 

  • Noy N, Blaner WS (1991) Interactions of retinol with binding proteins: studies with rat cellular retinol-binding protein and with rat retinol-binding protein. Biochemistry 30:6380–6386

    Article  PubMed  CAS  Google Scholar 

  • Noy N (1992a) The ionization behavior of retinoic acid in aqueous environments and bound to serum albumin. Biochim Biophys Acta 1106:151–158

    Article  PubMed  CAS  Google Scholar 

  • Noy N (1992b) The ionization behavior of retinoic acid in lipid bilayers and in membranes. Biochim Biophys Acta 1106:159–164

    Article  PubMed  CAS  Google Scholar 

  • Noy N, Slosberg E, Scarlata S (1992) Interactions of retinol with serum binding proteins: studies with retinol-binding protein, transthyretin and serum albumin. Biochemistry 31:11118–11124

    Article  PubMed  CAS  Google Scholar 

  • Noy N, Kelleher DJ, Scotto AW (1995) Interactions of retinol with lipid bilayers: studies with vesicles of different radii. J Lipid Res 36:375–382

    PubMed  CAS  Google Scholar 

  • Okajima T-LL, Pepperberg DR, Ripps H, Wiggert B, Chader GJ (1990) Interphotore-ceptor retinoid-binding protein promotes rhodopsin regeneration in toad pho-toreceptors. Proc Natl Acad Sci USA 87:6907–6911

    Article  PubMed  CAS  Google Scholar 

  • Okajima T-IL, Wiggert B, Chader GJ, Pepperberg DR (1994) Retinoid processing in retinal pigment epithelium of toad (Bufo marinus). J Biol Chem 269:21983–21989

    PubMed  CAS  Google Scholar 

  • Ong DE, Newcomer ME, Chytil F (1994) In: The Retinoids, Biology, Chemistry, and Medicine pp 283–318, Eds: Sporn MB, Roberts AB, Goodman DS, Raven, New York

    Google Scholar 

  • Pepperberg DR, Okajima T-IL, Wiggert B, Ripps H, Crouch RK, Chader GJ (1993) Interphotoreceptor retinoid-binding protein: molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol 7:61–85

    Article  PubMed  CAS  Google Scholar 

  • Radda GK, Smith DS (1970) retinol: a fluorescent probe for membrane lipids. FEBS Lett 9:287–289

    Article  PubMed  CAS  Google Scholar 

  • Rask L, Peterson P (1976) In vitro uptake of vitamin A from the retinol binding plasma protein to mucosal epithelial cells from monkey’s small intestines. J Biol Chem 251:6360–6366

    PubMed  CAS  Google Scholar 

  • Rask L, Gijer C, Bill A, Peterson P (1980) Vitamin A supply to the cornea. Exp Eye Res 31:201–211

    Article  PubMed  CAS  Google Scholar 

  • Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans-retinoic acid. Nature 378:681–689

    Article  PubMed  CAS  Google Scholar 

  • Saari JC, Teller DC, Crabb JW, Bredberg L (1985) Properties of an interphotoreceptor retinoid-binding protein from bovine retina. J Biol Chem 260:195–201

    PubMed  CAS  Google Scholar 

  • Saari JC, Bredberg DL, Noy N (1994) Control of substrate flow at a branch in the visual cycle Biochemistry 33:3106–3112

    CAS  Google Scholar 

  • Saari JC (1994) In: The Retinoids, Biology, Chemistry, and Medicine pp 351–386, Eds: Sporn MB, Roberts AB, Goodman DS, Raven, New York

    Google Scholar 

  • Saari JC, Huang J, Possin DE, Fariss RN, Leonard J, Garwin GG, Crabb JW, Milam AH (1997) Cellular retinal-binding protein is expressed by oligodendrocytes in optic nerve and brain, Glia 21:259–268

    CAS  Google Scholar 

  • Sande S, Privalsky ML (1996) Identification of TRACs (T-3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol Endocrinol 10:813–825

    Article  PubMed  CAS  Google Scholar 

  • Seol W, Mahon MJ, Lee YK, Moore DD (1996) Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol Endocrinol 10:1646–1655

    Article  PubMed  CAS  Google Scholar 

  • Sivaprasadarao A Boudjelal M, Findlay JBC (1994) Solubilization and purification of the retinol-binding protein receptor from human placental membranes. Biochem J 302:245–251

    PubMed  CAS  Google Scholar 

  • Small DM (1971) In: The Bile Acids. Vol 1, pp 249–355 Eds. Nair PP, Kritchevsky S,Plenum Soprano, Blaner (1994) In: The Retinoids, Biology, Chemistry, and Medicine pp 257-282, Eds: Sporn MB, Roberts AB, Goodman DS, Raven, New York

    Google Scholar 

  • Stillwell W, Ricketts M (1980) Effect of trans-retinol on the permeability of egg lecithin liposomes. Biochem Biophys Res Commun 97:148–153

    Article  PubMed  CAS  Google Scholar 

  • Stillwell W, Ricketts M, Hudson H, Nahmias S (1982) Effect of retinol and retinoic acid on permeability, electrical resistance and phase transition of lipid bilayers. Biochim Biophys Acta 668:653–659

    Google Scholar 

  • Stryer L (1981) Biochemistry, 2nd edn, chap 4, Freeman, New York

    Google Scholar 

  • Sundaram M, Sivaprasadarao A, DeSousa MM, Findlay JBC (1998) The transfer of retinol from serum retinol-binding protein to cellular retinol binding protein is mediated by a membrane receptor. J Biol Chem 273:3336–3342

    Article  PubMed  CAS  Google Scholar 

  • Szuts EZ, Harosi IH (1991) Solubility of retinoids in water. Arch Biochem Biophys 287:297–304

    Article  PubMed  CAS  Google Scholar 

  • Tschanz C, Noy N (1997) Binding of retinol in both retinoid-binding sites of IRBP is stabilized mainly by hydrophobic interactions. J Biol Chem 272:30201–30207

    Article  PubMed  CAS  Google Scholar 

  • Urbach J, Rando RR (1994) Isomerization of alRrans-retinoic acid to 9-ds-retinoic acid. Biochem J 299:459–65

    PubMed  CAS  Google Scholar 

  • Ward SJ, Chambon P, Ong DE, Bavik CA (1997) A retinol-binding protein receptor-mediated mechanism for uptake of vitamin A to postimplantation rat embryos. Biol Reprod 57:751–755

    Article  PubMed  CAS  Google Scholar 

  • Wassail SR, Phelps TM, Albrecht MR, Langsford CA, Stillwell W (1988) ESR study of the interactions of retinoids with a phospholipid model membrane. Biochim Biophys Acta 939:393–02

    Article  Google Scholar 

  • Wolffe AP (1997) Histones, nucleosomes and the role of chromatin structure in tran-scriptional control. Biochem Soc Trans 25:354–358

    PubMed  CAS  Google Scholar 

  • Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, Gronemeyer H (1996) A canonical structure for the ligand-binding domain of nuclear receptors, Nature Struct Biol 3:87–94

    Article  PubMed  CAS  Google Scholar 

  • Yang N, Schule R, Mangelsdorf DJ, Evans RM (1991) Characterization of DNA binding and retinoic acid binding properties of retinoic acid receptor. Proc Natl Acad Sci USA 88:3559–3563

    Article  PubMed  CAS  Google Scholar 

  • Yu V, Delsert C, Andersen B, Holloway J, Devary OV, Naeaer AM, Kim SY, Boutin JM, Glass CK, Rosenfeld MG (1991) RXR-beta a coregulator that enhances binding of retinoic acid, thyroid hormone and vitamin D receptors to their cognate response elements. Cell 67:1251–1266

    Article  PubMed  CAS  Google Scholar 

  • Zhang XK, Hoffmann B, Tran PB-V, Graupner G, Pfahl M (1992) Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature 355:441–46

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noy, N. (1999). Physical-Chemical Properties and Action of Retinoids. In: Nau, H., Blaner, W.S. (eds) Retinoids. Handbook of Experimental Pharmacology, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58483-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58483-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63614-1

  • Online ISBN: 978-3-642-58483-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics