All-Optical Access Node Technologies

  • Mohammed N. Islam
Part of the Springer Series in Photonics book series (PHOTONICS, volume 2)


All-optical switching technologies could lead to increased flexibility of communication networks by overcoming electronic bottlenecks and opto-electronic conversions. The combination of soliton transmission, ultrafast header processing and all-optical demultiplexing permits a routing service on a frame-by-frame basis, which might provide cost savings to high-speed networks by reducing the reliance on expensive SONET add/drop multiplexers. Also, the single channel speeds approaching 100Gb/s could be used to upgrade each channel in a wavelength-division-multiplexed network. A soliton ring network architecture is described that exploits the speeds of all-optical technologies, and the key enabling sub-systems are the access nodes or “on-” and “off-ramps” operating at 100Gb/s. Packet-drop function for a time-division multiplexing network using 100 Gbit/s, eight-bit words is experimentally demonstrated by integrating all-optical header processing and payload demultiplexing with electro-optic packet routing. The header processor consists of two levels of all-optical logic gates based on low birefringent nonlinear optical loop minors (NOLMs), and the payload demultiplexer is a two-wavelength NOLM. Synchronized lasers with timing jitter under 1 ps drive both devices. The contrast ratios for both header processor and demultiplexer are 10:1 and that of the packet router is 17 dB. The switching energies for header processing and payload reading are 10 pJ/pulse and 1 pJ/pulse, respectively. In addition, to test the system performance we experimentally measure the eye diagram of an all-optical header processor using a cross-correlator to achieve picosecond resolution. By varying 100 Gbit/s header packets, we measure an eye diagram with a Q value of 7.1 at 12 pJ packet pulse energy. From the Q value, we also statistically calculate the potential bit-error rate performance of 7х10-13 with a confidence level of 95%. The major challenges for ultrafast, all-optical networks include power requirements, timing jitter, and avoidance of pulse distortion.


Contrast Ratio Timing Jitter Access Node Slave Laser Management Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Sauer, M. N. Islam and S. P. Dijaili, J. Lightwave Technology, vol. 11, no. 12, pp. 2182–2190, 1993.ADSCrossRefGoogle Scholar
  2. 2.
    R. A. Barry, V. W. S. Chan, K. L. Hall, E. S. Kintzer, J. D. Moores, K. A. Rauschenbach, E. A. Swanson, L. E. Adams, C. R. Doerr, S. G. Finn, H. A. Haus, E. P. Ippen, W. S. Wong and M. Haner, IEEE J. Selected Areas in Communications,vol. 14, no. 5, pp. 999–1013, 1996.CrossRefGoogle Scholar
  3. 3.
    X. D. Cao, M. Jiang, P. Dasika, M. N. Islam, A. F. Evans, R. M. Hawk, D. A. Nolan, D. A. Pastel, D. L. Weidman and D. G. Moodie, CLEO’97, pp. 446–447.Google Scholar
  4. 4.
    B.C. Barnett, L. Rahman, M. N. Islam, Y. C. Chen, P. Bhattacharya, W. Rida, K.V. Reddy, A.T. Howe, K. A. Stair, H. Iwamura, S. R. Friberg and T. Mukai, Opt. Lett.,vol. 20, no. 5, pp. 471–473, 1995.ADSCrossRefGoogle Scholar
  5. 5.
    M. Jiang, W. Sha, L. Rahman, B.C. Barnett, J. K. Andersen, M. N. Islam and K. V. Reddy, Opt. Lett., vol. 21, no. 11, pp. 809–811, 1996.ADSCrossRefGoogle Scholar
  6. 6.
    X. D. Cao, B.C. Barnett, K. H. Ahn, Y. Liang, G. R. Williams, M. Vaziri and M. N. Islam, Opt. Lett., vol. 21, no. 16, pp. 1211–1213, 1996.ADSCrossRefGoogle Scholar
  7. 7.
    K. H. Ahn, X. D. Cao, Y. Liang, B.C. Barnett, S. Chaikamnerd, and M. N. Islam, J. Opt. Soc. Am., vol. 14, no. 5, pp. 1228–1236, 1997.ADSCrossRefGoogle Scholar
  8. 8.
    T. Kanada, and D.L. Franzen, Opt. Lett. 11, 4 (1986); H. Takara, S. Kawanishi, and M. Saruwatari, Electron. Lett. 32, 1399 (1996).Google Scholar
  9. 9.
    R.M. Bethea, B.S. Duran, and T.L. Boullion, Statistical Methods for Engineers and Scientists (Marcel Dekker, New York, 1995).Google Scholar
  10. 10.
    D. Marcuse, J. Lightwave Technol, vol. 8, 1816 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Mohammed N. Islam
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations