Transcriptional Regulation of the Desmin and SM22 Genes in Vascular Smooth Muscle Cells

  • M. Mericskay
  • Z. Li
  • D. Paulin
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 93)


There are several stages in the differentiation of smooth-muscle cells (SMCs) (embryonic, fetal, prenatal and adult) and a number of genes are specifically activated at each stage. The factors regulating myogenesis in skeletal muscle responsible for determination and differentiation, members of the MyoD family, have been identified [23]. However, the transcriptional mechanisms regulating the various stages of determination and differentiation in vascular SMCs are still unknown. Our studies over the past few years have focused on the regulation of genes linked to the differentiation of this tissue.


Serum Response Factor Vascular SMCs SM22 Gene MyoD Family Desmin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belaguli N, Schildmeyer LA, Schwartz RJ (1997) Organization and myogenic restricted expression of the murine serum response factor gene - a role for autoregulation. J Biol Chem 272:18222–18231PubMedCrossRefGoogle Scholar
  2. 2.
    Catala F, Wanner R, Barton P, Cohen A, Wright W, Buckingham M (1995) A skeletal muscle-specific enhancer regulated by factors binding to E and CArG boxes is present in the promoter of the mouse myosin light-chain lA gene. Mol Cell Biol 15:4585–4596PubMedGoogle Scholar
  3. 3.
    Chen CY, Schwartz RJ (1996) Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac α-actin gene transcription. Mol Cell Biol 16:6372–6384PubMedGoogle Scholar
  4. 4.
    Croissant JD, Kim J, Eichele G, Goering L, Lough J, Prywes R, Schwartz RJ (1996) Avian serum response factor expression restricted primarily to muscle cell lineages is required for α-actin gene transcription. Dev Biol 177:250–264PubMedCrossRefGoogle Scholar
  5. 5.
    Duband JL, Gimona M, Scatena M, Sartore S, Small JV (1993) Calponin and SM22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonnic development. Differentiation 55:1–11PubMedCrossRefGoogle Scholar
  6. 6.
    Hautman MB, Owen GK (1997) A transforming growth factor β (TGFβ) control element drives TGFß-induced stimulation of smooth muscle α-actin gene expression in concert with two CArG elements. J Biol Chem 272:10948–10956CrossRefGoogle Scholar
  7. 7.
    Herring BP, Smith AF (1996) Telokin expression is mediated by a smooth muscle cell-specific promoter. Am J Physiol 270:C1656–1665PubMedGoogle Scholar
  8. 8.
    Kelm RJ, Siquan S Jr, Strauch AR, Gtz MJ (1996) Repression of transcriptional enhancer factor-1 and activator protein-1 -dependent enhancer activity by vascular actin single stranded DNA-binding factor 2. J Biol Chem 271:24278–24285PubMedCrossRefGoogle Scholar
  9. 9.
    Kim S, Ip HS, Lu MM, Clendenin C, Parmacek MS (1997) A serum response factor-dependent transcriptional regulatory program identifies distinct smooth muscle cell lineages. Mol Cell Biol 17:2266–2278PubMedGoogle Scholar
  10. 10.
    Kuisk IR, Li H, Tran D, Capetanaki Y (1996) A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis. Dev Biol 174: 1–13PubMedCrossRefGoogle Scholar
  11. 11.
    Li L, Miano JM, Mercer B, Olson EN (1996) Expression of the SM22a promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol 132:849–859PubMedCrossRefGoogle Scholar
  12. 12.
    Li Z, Lillienbaum A, Butler-Browne G, Paulin D (1989) Human desmin coding gene: complete nucleotide sequence, characterization and regulation of expression during myogenesis and development. Gene (Amst) 78:243–254CrossRefGoogle Scholar
  13. 13.
    Li Z, Paulin D (1993) Different factors interact with myoblast-specific and myotube-specific enhancer regions of the human desmin gene. J Biol Chem 268:10403–10415PubMedGoogle Scholar
  14. 14.
    Li Z, Marchand P, Humber J, Babinet C, Paulin D (1993) Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice. Development 117: 947–959PubMedGoogle Scholar
  15. 15.
    Li Z, Collucci-Guyon E, Pinçon-Raymond M, Mericskay M, Pournin S, Paulin D, Babinet C (1996) Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev Biol 175: 362–366PubMedCrossRefGoogle Scholar
  16. 16.
    Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell L-E, Babinet C, Paulin D (1997) Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation and fusion of skeletal muscle. J Cell Biol 139: 129–144PubMedCrossRefGoogle Scholar
  17. 17.
    Madsen CS, Regan CP, Owens GK (1997) Interaction of CArG elements and a GC-rich repressor element in transcriptional regulation of the smooth muscle myosin heavy chain in vascular smooth muscle cells. J Biol Chem 272:29842–29851PubMedCrossRefGoogle Scholar
  18. 18.
    Moessler H, Mericskay M, Li Z, Nagl S, Paulin D, Small JV (1996) The SM22 promoter directs tissue-specific expression in arterial but not venous nor visceral smooth muscle cells in transgenic mice. Development 122:415–425Google Scholar
  19. 19.
    Molkentin JD, Black BL, Martin JF, Olson EN (1995) Cooperative activation of muscle gene transcription by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136PubMedCrossRefGoogle Scholar
  20. 20.
    Momiyama T, Hayashi K, Obata H, Chimori Y, Nishida T, Kamiike W, Matsuda H, Sobue K (1998) Functional involvement of serum response factor in the transcriptional regulation of caldesmon gene. Biochem Biophys Res Commun 242:429–435PubMedCrossRefGoogle Scholar
  21. 21.
    Obata H, Hayashi K, Nishida W, Momiyama T, Uchida A, Ochi T, Sobue K (1997) Smooth muscle cell phenotype-dependent transcriptional regulation of the al integrin gene. J Biol Chem 272:26643–26652PubMedCrossRefGoogle Scholar
  22. 22.
    Schwartz SM, deBlois D, O’Brien ERM (1995) The intima: soil for atherosclerosis and restenosis. Circ Res 77:445–465PubMedCrossRefGoogle Scholar
  23. 23.
    Tajbakhsh S, Cossu G (1997) Establishing myogenic identity during somatogenesis. Curr Opin Genet Dev 7:634–641PubMedCrossRefGoogle Scholar
  24. 24.
    Thornell L-E, Carlsson L, Li Z, Mericskay M, Paulin D (1997) Null mutation in the desmin gene gives rise to a cardiomyopathy. J Mol Cell Cardiol 29:2107PubMedCrossRefGoogle Scholar
  25. 25.
    Treisman R (1994) Ternary complex factors: growth factor regulated transcriptional activators. Curr Biol 4:96–101Google Scholar
  26. 26.
    Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci U S A 94:1852–1856PubMedCrossRefGoogle Scholar
  27. 27.
    Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, Reinhardt DP, Sakai LY, Biery NJ, Bunton T, Dietz HC, Ramirez F (1997) Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17:218–222PubMedCrossRefGoogle Scholar
  28. 28.
    Gardner H, Kreidberg J, Koteliansky V, Jaenisch R (1996) Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev Biol 175:301–313PubMedCrossRefGoogle Scholar
  29. 29.
    Gurtner GC, Davis V, Li H, McCoy MJ, Sharpe A, Cybulsky MI (1995) Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 9:1–14PubMedCrossRefGoogle Scholar
  30. 30.
    Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, Labow MA (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:489–503PubMedGoogle Scholar
  31. 31.
    Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121:549–560PubMedGoogle Scholar
  32. 32.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedCrossRefGoogle Scholar
  33. 33.
    Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J (1997) A requirement for Flkl in primitive and definitive hematopoiesis and vasculogenesis. Cell 89: 981–990PubMedCrossRefGoogle Scholar
  34. 34.
    Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74PubMedCrossRefGoogle Scholar
  35. 35.
    Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8:1888–1896PubMedCrossRefGoogle Scholar
  36. 36.
    Offermanns S, Mancino V, Revel JP, Simon MI (1997) Vascular system defects and impaired cell chemokinesis as a result of Galphal3 deficiency. Science 275:533–536PubMedCrossRefGoogle Scholar
  37. 37.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439PubMedCrossRefGoogle Scholar
  38. 38.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442PubMedCrossRefGoogle Scholar
  39. 39.
    Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180PubMedCrossRefGoogle Scholar
  40. 40.
    Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121:1845–1854PubMedGoogle Scholar
  41. 41.
    Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245PubMedCrossRefGoogle Scholar
  42. 42.
    Bugge TH, Xiao Q, Kombrinck KW, Flick MJ, Holmback K, Danton MJ, Colbert MC, Witte DP, Fujikawa K, Davie EW, Degen JL (1996) Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc Natl Acad Sci USA 93:6258–6263PubMedCrossRefGoogle Scholar
  43. 43.
    Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P, Muller M, Risau W, Edgington T, Collen D (1996) Role of tissue factor in embryonic blood vessel development. Nature 383:73–75PubMedCrossRefGoogle Scholar
  44. 44.
    Cui J, O’Shea KS, Purkayastha A, Saunders TL, Ginsburg D (1996) Fatal haemorrhage and incomplete block to embryogenesis in mice lacking coagulation factor V. Nature 384:66–68PubMedCrossRefGoogle Scholar
  45. 45.
    Rosen ED, Chan JC, Idusogie E, Clotman F, Vlasuk G, Luther T, Jalbert LR, Albrecht S, Zhong L, Lissens A, Schoonjans L, Moons L, Collen D, Castellino FJ, Carmeliet P (1997) Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 390: 290–294PubMedCrossRefGoogle Scholar
  46. 46.
    Carmeliet P, Moons L, Ploplis V, Plow E, Collen D (1997) Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J Clin Invest 99:200–208PubMedCrossRefGoogle Scholar
  47. 47.
    Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM (1997) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11:2996–3006PubMedCrossRefGoogle Scholar
  48. 48.
    Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407PubMedCrossRefGoogle Scholar
  49. 49.
    Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A, Emmert-Buck MR, Westphal H, Klausner RD, Linehan WM (1997) Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 94:9102–9107PubMedCrossRefGoogle Scholar
  50. 50.
    Smith JD, Breslow JL (1997) The emergence of mouse models of atherosclerosis and their relevance to clinical research. J Internal Med 242:99–109PubMedCrossRefGoogle Scholar
  51. 51.
    Williamson R, Lee D, Hagaman J, Maeda N (1992) Marked reduction of high density lipoprotein cholesterol in mice genetically modified to lack apolipoprotein A-I. Proc Natl Acad Sci U S A 89:7134–7138PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • M. Mericskay
  • Z. Li
  • D. Paulin

There are no affiliations available

Personalised recommendations