Skip to main content

Plasticity

  • Chapter
Ceramics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 36))

  • 843 Accesses

Abstract

Plastic deformation of materials in the general sense can be defined as irreversible deformation, which means that in a tensile or compression test after loading and unloading a deformation remains. Different mechanisms can be responsible for such an irreversible or plastic deformation: dislocation motion, vacancy motion, twinning, phase transformation, and viscous flow of amorphous materials. In a polycrystalline or multiphase material the deformation can take place within the grains or predominantly along the grain or phase boundaries. In metals at room temperature dislocation motion is the most important deformation mechanism. In ceramics dislocation motion requires high shear stresses due to covalent bonds. Therefore under most loading conditions ceramics fail by the extension of flaws, whereas the competing failure mechanism by dislocation motion would require higher stresses. Nevertheless the plastic deformation and the formation of dislocations have been observed under specific loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Makino, H., Kamiya, N., Wada, S. (1991): Effects of grain size of hot-pressed silicon nitride on contact damage morphology and residual strength, J. Am. Ceram. Soc. 74, 2002–2004.

    Article  Google Scholar 

  2. Guiberteau, F., Padture, N.P., Lawn, B.R. (1994): Effect of grain size on Hertzian contact damage in alumina, J. Am. Ceram. Soc. 77, 1825–1831.

    Article  CAS  Google Scholar 

  3. Rombach, M., Hollstein, T. (1995): Untersuchungen zum mechanischen Verhalten von Siliciumnitrid in einem Kugel-Platte-Kontakt, Mat.-wiss. und Werkstofftech. 26, 276–282.

    Article  CAS  Google Scholar 

  4. Lee, S.K., Wuttiphan, S., Lawn, B.R. (1997): Role of microstructure in Hertzian contact damage in silicon nitride: I, mechanical characterization, J. Am. Ceram. Soc. 80, 2367–2381.

    Article  CAS  Google Scholar 

  5. Hertz, H. (1882): Über die Berührung fester elastischer Körper, J. reine angew. Mathematik 92, 165–171.

    Google Scholar 

  6. Timoshenko, S.P., Goodier, J.N. (1970): Theory of Elasticity, McGraw-Hill, Japan.

    Google Scholar 

  7. Fischer-Cripps, A.C., Lawn, B.R. (1996): Stress analysis of contact deformation in quasi-plastic ceramics, J. Am. Ceram. Soc. 79, 2609–2618.

    Article  CAS  Google Scholar 

  8. Xu, H.H.K., Wie, L., Padture, N.P., Lawn, B.R., Yeckley (1995): Effect of micro-structural coarsening on Hertzian damage in silicon nitride, J. Mater. Sci. 30, 869–878.

    CAS  Google Scholar 

  9. Pfeiffer, W., Rombach, M., Sommer, E. (1996): Assessment of strength-dominating near-surface-characteristics of machined ceramics, Fracture Mechanics of Ceramics, Vol. 11, 401–412, Plenum Press, New York.

    Google Scholar 

  10. Chen, I.W., Reyes-Morel, P.E. (1986): Implications of transformation plasticity in ZrO2-containing ceramics: I, Shear and dilatation effects, J. Am. Ceram. Soc. 69, 181.

    Article  CAS  Google Scholar 

  11. Chen, I.W. (1991): Model of transformation toughening in brittle material, J. Amer. Ceram. Soc. 74, 2564–2572.

    Article  CAS  Google Scholar 

  12. Rauchs, G. (1998): Untersuchungen zur tetragonal-monoklinen Phasenumwandlung in CeO2-stabilisiertem Zirkonoxid bei mehrachsiger Belastung, Thesis, University of Karlsruhe, Karlsruhe, Germany.

    Google Scholar 

  13. Becher, P.F., Swain, M.V. (1992): Grain-size-dependent transformation behaviour in polycrystalline tetragonal zirconia, J. Am. Ceram. Soc. 75, 493–502.

    Article  CAS  Google Scholar 

  14. Cao, H., Evans, A.G. (1993): Nonlinear deformation of ferroelectric ceramics, J. Amer. Ceram. Soc. 76, 890–896.

    Article  CAS  Google Scholar 

  15. Schäufele, A., Härdtl, K.H. (1996): Ferroelastic properties of lead zirconate titanate ceramics, J. Amer. Ceram. Soc. 79 (1996), 2637–2640.

    Google Scholar 

  16. Fett, T., Müller, S., Munz, D., Thun, G. (1998): Nonsymmetry in deformation behaviour of PZT, J. Mater. Sci. Letters 17, 261–265.

    Article  CAS  Google Scholar 

  17. Nadai, A. (1959): Theory of Flow and Fracture of Solids (Chapter 22), Vol. 1, McGraw-Hill, New York.

    Google Scholar 

  18. Fett, T., Munz, D., Thun, G. (1998): Nonsymmetric deformation behaviour of PZT determined in bending tests, J. Am. Ceram. Soc. 81, 269–272.

    Article  CAS  Google Scholar 

  19. Subbarao, E.C., McQuarrie, M.C., Buessem, W.R., Domain effects in polycrystalline barium titanate, J. Appl. Phys. 28 (1957), 1194–1200.

    Article  CAS  Google Scholar 

  20. Fett, T., Thun, G. (1998): Determination of room-temperature tensile creep of PZT, to appear in J. Mater. Sci. Letters, Vol 17.

    Google Scholar 

  21. Finlayson, T.R., Gross, A.H., J.R. Griffiths, E.H. Kisi (1994): Creep of Mg-PSZ at room temperature, J. Am. Ceram. Soc. 77, 617–624.

    Article  CAS  Google Scholar 

  22. Pan, L.S., Horibe, S. (1996): An in-situ investigation on the critical phase transformation stress of tetragonal zirconia polycrystalline ceramics, J. Mater. Sci. 31, 6523–6537.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munz, D., Fett, T. (1999). Plasticity. In: Munz, D., Fett, T. (eds) Ceramics. Springer Series in Materials Science, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58407-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58407-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63580-9

  • Online ISBN: 978-3-642-58407-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics