Skip to main content

Thermal Shock Behaviour

  • Chapter
Ceramics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 36))

Abstract

Most ceramic materials are sensitive to thermal shock and thermal fatigue. Due to inhomogeneous temperature distributions in rapidly cooled or heated ceramic components, high thermal stresses are generated which are responsible for the extension of existing cracks. Whereas in metals the temperature gradients only cause small plastic deformations, in the case of ceramics with its linear elastic material behaviour high stresses are generated. As a consequence, thermal stresses have to be avoided or at least to be minimized by an appropriate design or an appropriate material selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kingery, W.D. (1955): Factors of affecting thermal shock resistance of ceramic materials, J. Am. Ceram. Soc. 38, 3–15

    Article  Google Scholar 

  2. Hasselman, D.P.H. (1963): Elastic energy at fracture and surface energy as design criteria for thermal shock, J. Am. Ceram. Soc. 46, 535–540.

    Article  CAS  Google Scholar 

  3. Hasselman, D.P.H. (1969): Unified theory of thermal shock, J. Am. Ceram. Soc. 52, 600–604.

    Article  CAS  Google Scholar 

  4. Hasselman, D.P.H. (1978): Figures-of-merit for the thermal stress resistance of high-temperature brittle materials: a review, Ceramurgia Int. 4, 147.

    Article  Google Scholar 

  5. Pompe, W., Bahr, H.A., Hille, G., Kreher, W., Schultrich, B., Weiss, HJ. (1985): Mechanical properties of brittle materials — modern theories and experimental evidence, Current Topics in Material Science 12, 205–483.

    CAS  Google Scholar 

  6. Bahr, H.A., Weiss, HJ. (1986): Heuristic approach to thermal shock damage due to single and multiple crack growth, Theor. Appl. Fract. Mech. 6, 57–62.

    Article  Google Scholar 

  7. Evans, A.G., Charles, E.A. (1977): Structural integrity in severe thermal environments, J. Am. Ceram. Soc. 60, 22–28.

    Article  CAS  Google Scholar 

  8. Bertsch, B.E., Larson, D.R., Hasselman, D.P.H. (1974): Effect of crack density on strength loss of poly crystalline A12O3 subjected to severe thermal shock, J. Am. Ceram. Soc. 57, 235–236.

    Article  CAS  Google Scholar 

  9. Chiu, C.-C., Case, E.D. (1992): Statistical study of the effect of subcritical crack growth on thermal shock resistance, J. Mater. Sci. 27, 6707–6714.

    Article  CAS  Google Scholar 

  10. Koumoto, K., Shimizu, H., Seo, W.S., Pai, C.H., Yanagida, H. (1991): Thermal shock resistance of porous SiC ceramics, Internal Report, University of Tokyo, 90, 32–33.

    CAS  Google Scholar 

  11. Swain, M V. (1990): R-curve behaviour and thermal shock resistance of ceramics, J. Am. Ceram. Soc. 73, 621–628.

    Article  CAS  Google Scholar 

  12. Wu, X.R., Carlsson, A.J., Weight Functions and Stress Intensity Factor Solutions, Pergamon Press, Oxford, 1991.

    Google Scholar 

  13. Fett, T., Munz, D. (1997): Stress Intensity Factors and Weight Functions, Computational Mech. Publ., Ashurst Southampton.

    Google Scholar 

  14. Swain, M.V. (1993): Significance of non-linear stress-strain and R-curve behaviour on thermal shock of ceramics, in: Thermal Shock and Thermal Fatigue Behaviour of Advanced Ceramics, Eds. G.A. Schneider and G. Petzow, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  15. Bahr, H.A., Fett, T., Hahn, L, Munz, D., Pflugbeil, I. (1993): Fracture mechanics treatment of thermal shock and the effect of bridging stresses, in: Thermal Shock and Thermal Fatigue Behaviour of Advanced Ceramics, Eds. G.A. Schneider and G. Petzow, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  16. Schneider, G.A., Magerl, F., Hahn, I., Petzow, G. (1993): In situ observations of unstable and stable crack propagation and R-curve behaviour in thermally loaded disks, in: Thermal Shock and Thermal Fatigue Behaviour of Advanced Ceramics, Eds. G.A. Schneider and G. Petzow, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  17. Becher, P.F., Lewis, D., Carman, K.R., Gonzales, A.C. (1980): Thermal shock resistance of ceramics: Size and geometry effects in quench tests, J. Am. Ceram. Bul. 59, 542–548.

    CAS  Google Scholar 

  18. Gupta, T.K. (1975): Effect of specimen size on the strength degradation of A12O3 subjected to thermal shock, J. Am. Ceram. Soc. 58, 158–159.

    Article  CAS  Google Scholar 

  19. Hasselman, D.P.H. (1970): Strength behavior of polycrystalline alumina subjected to thermal shock, J. Am. Ceram. Soc. 53, 490–495.

    Article  CAS  Google Scholar 

  20. Lutz, E.H. (1995): Size sensitivity to thermal shock of plasma-sprayed ceramics and factors affecting the size effect, J. Am. Ceram. Soc. 78, 2700–2704.

    Article  CAS  Google Scholar 

  21. Bradshaw, F.J, Tech. Notes MET 100 and MET 111 British RAE, 1949.

    Google Scholar 

  22. Buessem, W.R. (1956): High Temperature Technology, Wiley, Inc., New York, 460–476.

    Google Scholar 

  23. Keller, K., Munz, D., Fett, T. (1989): Investigation of the thermal fatigue behaviour of HPSN, SiC and glass, in: Euro Ceramics, Eds. de With, G., Terpstra, R.A., Metselaar, R., Vol. 3, Elsevier Applied Science, London.

    Google Scholar 

  24. Shiratori, M., Miyoshi, T., Tanikawa, K. (1986): Analysis of stress intensity factors for surface cracks subjected to arbitrarily distributed surface stresses, Trans. Japan Soc. Mech. Engrs. 52, 390–398.

    Article  Google Scholar 

  25. Fett, T., Munz, D., Neumann, J. (1990): Local stress intensity factors for surface cracks in plates under power-shaped stress distributions, Engng. Fract. Mech. 36, 647–651.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munz, D., Fett, T. (1999). Thermal Shock Behaviour. In: Munz, D., Fett, T. (eds) Ceramics. Springer Series in Materials Science, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58407-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58407-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63580-9

  • Online ISBN: 978-3-642-58407-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics