Skip to main content

Acid Rain — Gone?

  • Conference paper
Atmospheric Environmental Research
  • 105 Accesses

Abstract

The term acid rain denotes one of the most serious environmental problems we have dealt with, the acidification of our environment. Remarkably, a treatise on acid rain was published in England in 1872 by Robert Angus Smith. In his 1872 book, “Air and Rain: The Beginning of a Chemical Climatology,” he noted three types of areas as one moved from the city to the surrounding countryside: “that with carbonate of ammonia in the fields at a distance, that with sulphate of ammonia in the suburbs and that with sulphuric acid or acid sulphate, in the town.” In the 1840s Smith was in Germany, as a student of Justus von Liebig, who was probably the first who mentioned the chemical interaction between the atmosphere and the biosphere (Liebig 1843). I think Smith achieved a more distinguished idea establishing the term Chemical Climatology than linking Air and Rain. However, for about l00 years air chemistry had been limited almost only to precipitation chemistry, despite the known fact that the chemical composition of rainwater is a result of chemical processes which occur both in the rainwater and external to it (Drischel 1940). The 1944 vegetation injury in the Los Angeles County (Middleton et al. 1952) and the 1952 London air pollution incident (Wilkins 1954) finally initiated an extensive study of chemical processes in the atmosphere. Since then, these episodes, representing different types of air pollution, have been dubbed London (sulphurous) smog and Los Angeles (photochemical) smog.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker K, Wieprecht W, Möller D, Mauersberger G, Naumann S, Oestreich A (1995) Evidence for ozone destruction in clouds. Naturwiss 82:86–89

    Article  CAS  Google Scholar 

  • Acker K, Möller D, Wieprecht W, Naumann S (1996) Mt. Brocken, a site for a cloud chemistry programme in Central Europe. Water, Air, Soil Poll 85:1979–1984

    Article  Google Scholar 

  • Adewyui Y, Cho SY, Tsay KP, Carmichael GR (1984) Importance of formaldehyde in cloud chemistry. Atmos Environ 18: 2413–2420

    Article  Google Scholar 

  • Arrhenius S (1887) Über die Dissoziation der im Wasser gelösten Stoffe. Z Phys Chem 1 (1887) 631–648

    Google Scholar 

  • Beilke S (1997) Changing concentrations and deposition of sulfur and nitrogen compounds in Germany between 1980 and 1995.In preparation

    Google Scholar 

  • BMU (ed) (Bundesministerium für Umwelt) (1996) 6. Immissionschutzbericht der Bundesregierung an den Deutschen Bundestag. Drucksache 13/4825 vom 11.6.96, Deutscher Bundestag (Anlage)

    Google Scholar 

  • Bowersox VC, Pena RG de (1980) Analysis of precipitation chemistry at a central Pennsylvania site. J Geophys Res 85: 5614–5620

    Article  CAS  Google Scholar 

  • Brimblecombe P (1992) History of atmospheric acidity. In: Radojevic M, Harrison RM (ed) Atmos-pheric acidity-sources, consequences and abatement. Elsevier, London, New York, pp 267–304

    Google Scholar 

  • Brimblecombe P, Pitman J (1980) Long-term deposit at Rothamsted, southern England. Tellus 32 261–267

    Article  CAS  Google Scholar 

  • Brönstedt JN (1934) Zur Theorie der Säuren und Basen und der protolytischen Lösungsmittel. Z Phys Chem 169A: 52–74

    Google Scholar 

  • Brosset C (1976) A method of measuring airborne acidity: Its application for the determination of acid content on long-distance transported particles and in drainage water from spruces. Water, Air, and Soil Pollut 6: 259–275

    Article  Google Scholar 

  • Buijsman E (1986) Historical trend in the ammonia emission in Europe (1870–1980). Report R-86–9 Inst for Meteorology and Oceanography, University Utrecht, The Netherlands

    Google Scholar 

  • Chameides WL (1984) The photochemistry of a remote marine stratifrom cloud. J Geophys Res 89:4739–4755

    Article  CAS  Google Scholar 

  • Cotton FA, Wilkinson G (1967) Advanced inorganic chemistry. Wiley-Interscience, New York

    Google Scholar 

  • Däßler HG (1976) Einfluß von Luftverunreinigungen auf die Vegetation. G Fischer Verlag, Jena

    Google Scholar 

  • DIN 38409 (1979) Bestimmung der Säure- und Basekapazität (H7). In: Teil 7: Deutsche Einheits-verfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Summarische Wirkungs- und Stoffkenngrößen (Gruppe H). Beuth Verlag, Berlin

    Google Scholar 

  • Drischel H (1940) Chlorid, Sulfat-und Nitratgehalt der atmosphärischen Niederschläge in Bad Reinerz und Oberschreiberhau im Vergleich zu bisher bekannten Werten anderer Orte. Der Balneologe 7: 321–334

    CAS  Google Scholar 

  • Fachini MC, Fuzzi S (1993) Atmospheric acidity: A useful tool to describe the distribution of chemical species among the different phases in fog. In: Sorrell PM, Sorrell P, Cvitas T. Seiler W (ed) Photo-oxidants: Precursors and Products. Proc EUROTRAC Symp 1992 SPB Academic Pubis, Den Haag, PP 505–509

    Google Scholar 

  • Fay JA, Colomb D, Kumar S (1986) Modelling of the 1990–1980 trend of precipitation acidity at Hubbard Brook, New Hampshire. Atmos Environ 20: 1825–1828

    Article  CAS  Google Scholar 

  • Fricke W, Beilke S, Bieber E, Uhse K, Wallasch M (1997) Ergebnisse täglicher Niederschlagsanalysen in Deutschland von 1982 bis 1995. Berichte 1/97 Umweltbundesamt, Offenbach

    Google Scholar 

  • Friedrich R (1995) pers commun concerns future development

    Google Scholar 

  • Fuzzi S, Fachini MC, Winiwarter W, Fierlinger H, Arends BG (1993) Non-equilibrium chemistry in clouds? In: Sorrell PM (ed) Proceedings of EUROTRAC Symposium ’ 92. SPB Acad. Publ., The Hague, pp 481–485

    Google Scholar 

  • Galloway JN, Likens GE, Keene WC, Miller JM (1982) The composition of precipitation in remote areas of the world. J Geophys Res 87: 8771–8786

    Article  CAS  Google Scholar 

  • Galster H (1990) pH-Messung-Grundlagen, Methoden, Anwendungen, Geräte. Verlag Chemie, Weinheim

    Google Scholar 

  • Georgii HW (1981) Review of the acidity of precipitation according to the WMO network. Idöjaras 85: 1–9

    Google Scholar 

  • Georgii HW, Grosch S, Schmitt G (1986) Festsellung der Schadstoffbelastung von Waldgebieten in der Bundesrepublik Deutschland durch trockene und nasse Deposition. Research Report Inst of Meteorology, University Frankfurt (M)

    Google Scholar 

  • Gerlach S (1913) Die Ermittlung des Säuregehalts der Luft in der Umgebung von Rauchgasen und der Nachweis seines Ursprungs. In: Wislicenus H (ed) Sammlung von Abhandlungen über Abgase von Rauchschäden, Heft 3. Paul Parey, Berlin

    Google Scholar 

  • Graedel TE, Weschler CJ (1981) Chemistry within aqueous atmospheric aerosol and raindrop. Rev Geophys Space Physics 19: 505–539

    Article  CAS  Google Scholar 

  • Granat L (1972) On the relation between pH and the chemical composition in atmospheric precipitation. Tellus 24: 550–560

    Article  CAS  Google Scholar 

  • Gschwandtner G, Gschwandtner K, Eldridge K, Mann C, Momy D (1986) Historic emissions of sulphur and nitrogen oxides in the United States from 190o to 1980. J Air Poll Contr Assoc 36: 139–149

    Article  CAS  Google Scholar 

  • Haldcarinen C (1983) General consideration and examples of data evaluation and quality assurance procedures applicable to BAPMON precipitation chemistry. WMO Env Pollut Monitor and Res Programme No 17, Geneva

    Google Scholar 

  • Hedin LO, Granat L, Likens GE, Bulshand TA, Galloway JN, Butler TJ, Rodhe H (1994) Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367:351–354

    Article  CAS  Google Scholar 

  • Horváth L (1983) Trend of the nitrate and ammonium content of precipitation water in Hungary for the last 80 years. Tellus 35B: 304–308

    Article  Google Scholar 

  • Horváth L, Möller D (1987) On the “natural” acid deposition and the possible consequences of decreased SO2 and NO2 emissions in Europe. Idöjaras 91: 217–223

    Google Scholar 

  • Jacob DJ (1986) Chemistry of OH in remote clouds and its role in the production of formic acid and peroxomonosulfate. J Geophys Res 91: 9807–9826

    Article  CAS  Google Scholar 

  • Jacob DJ, Hoffmann MR (1983) A dynamic model for the prediction of H+, NO -3 , and SO 2-4 in urban fog. J Geophys Res 88: 6611–6621

    Article  CAS  Google Scholar 

  • Jost D, Beilke S (1983) Trend saurer Depositionen. In: VDI-Berichte 500, pp 138–140

    Google Scholar 

  • Klockow D, Deuzinger H, Rönicke G (1978) Zum Zusammenhang zwischen pH-Wert und Elektrolytzusammensetzung von Niederschlägen. VDI-Bericht No 314, pp 21–26

    CAS  Google Scholar 

  • Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38: 762–785

    Article  CAS  Google Scholar 

  • Liljestrand HM (1985) Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems. Atmos Environ 19: 487–500

    Article  CAS  Google Scholar 

  • Liebig J von (1843) Die Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig

    Google Scholar 

  • MAP3S/RAINE Research Community (1982) The MAP3S precipitation chemistry network: Statistical overview for the period 1976–1980. Atmos Environ 16:1603–1631

    Google Scholar 

  • Marquardt W, Ihle P (1988) Acidic and alkaline precipitation components in mesocale range under the aspect of meteorological factors and the emissios. Atmos Environ 22: 2707–2713

    Article  CAS  Google Scholar 

  • Marquardt W, Brüggemann E, Ihle P (1996) Trends in the composition of wet deposition: effects of the atmospheric rehabilitation in East-Germany. Tellus 48B: 361–371

    CAS  Google Scholar 

  • Middleton JT, Kendrick JB Jr, Schwalm HW (1952) Injury to herbaceous plants by smog or air pollution. Plants Dis Rep 34, 245

    Google Scholar 

  • Möller D (1983) Zu den Ursachen und zur Quantifizierung saurer Niederschläge in der DDR unter besonderer Berücksichtigung von SO2 NH3 und NOx. Research Report, Institute for Geography and Geoecology, Berlin (unpublished )

    Google Scholar 

  • Möller D (1990) The Na/Cl ratio in rain water and the sea salt chloride cycle. Tellus 42B: 254–262

    Google Scholar 

  • Möller D (1995a) Cloud processes in the troposhere. In: Delmas RJ (ed) Ice core studies of global biogeochemical cyles. NATO ASI Series, Vol I 30, Springer-Verlag, Berlin, Heidelberg, pp 39–63

    Google Scholar 

  • Möller D (1995b) Sulfate aerosol and their atmospheric precursors. In: Charlson RJ, Heintzenberg J (eds) Aerosol forcing of climate. John Wiley & Sons Ltd, New York, pp 73–90

    Google Scholar 

  • Möller D, Horváth L (1988) Estimation of natural acidity of precipitation water on global scale. Idöjaras 93:324–335

    Google Scholar 

  • Möller D, Mauersberger G (1990) Auswaschen von Gasen und Aerosolen durch Niederschläge unter Bericksichtigung einer komplexen Fltissigphasenchemie. 2. Modellergebnisse. Z Meteor 40:330–339

    Google Scholar 

  • Möller D, Mauersberger G (1995) An aqueous phase chemical reaction mechanism. In: Clouds: Models and mechanisms EUROTRAC Special Publ, Garmisch-Partenkirchen, pp 77–93

    Google Scholar 

  • Möller D, Schieferdecker H (1985) A relationship between agricultural NH3 emissions and the atmospheric SO2, content over industrialized areas. Atmos Environ 19: 695–700

    Article  Google Scholar 

  • Möller D, Schieferdecker H (1989) Ammonia emission and deposition of NHxin the GDR. Atmos Environ 23: 187–1193

    Google Scholar 

  • Möller D, Zierath R (1986) On the origin of rain water components and their relation to acidity. Tellus 38B:324–335

    Google Scholar 

  • Möller D, Acker K, Wieprecht W (1993) Cloud chemistry at the Brocken in the Harz mountains. EUROTRAC Newsletters 12: 24–29

    Google Scholar 

  • Möller D, Acker K, Marquardt W, Brüggemann E (1996) Precipitation and cloud chemistry in the Neue Bundesländer of Germany in the background of changing emissions. Idöjaras 100: 117–133

    Google Scholar 

  • Munger JW, Eisenreich SJ (1983) Continental-scale variations in precipitation chemistry. Env Sci Technol 17:32A–42A

    Article  Google Scholar 

  • Mylona S (1996) Sulphur dioxide emissions in Europe 1880–1991 and their effect on sulphur concentrations and depositions. Tellus 48B: 662–689

    CAS  Google Scholar 

  • Odén S (1976) The acidity problem-an outline of concepts. Water, Air and Soil Pollut 6: 137–166

    Article  Google Scholar 

  • Ostwald W (1894) Grundlagen der Analytischen Chemie. Theodor Steinkopf, Dresden, Leipzig

    Google Scholar 

  • Rodhe H, Granat L (1984)An evaluation of sulfate in European precipitation 1955–1982. Atmos Environ 18: 2627–2639

    Article  CAS  Google Scholar 

  • Rodhe H, Rood MJ (1986)Temporal evolution of nitrogen compounds in Swedish precipitation since 1955. Nature 321: 762–764

    Article  CAS  Google Scholar 

  • Schröder J von, Reuß C (1883) Die Beschädigung der Vegetation durch Rauch. Paul Parey, Berlin

    Google Scholar 

  • Schwabe K (1959) Über Aziditätsmaße. Abhandlungen der Sachs. Akademie der Wissenschaften der DDR, Akademie-Verlag Berlin, Vol 46, No 2, pp:3–24

    Google Scholar 

  • Schwabe K (1976) pH-Messtechnik. Verlag Th. Steinkopf, Dresden

    Google Scholar 

  • Schwartz SE (1984) Mass-transport considerations pertinent to aqueous-phase reactions of gases in liquid-water clouds. In: Jaeschke W (ed)Chemistry of multiphase tmospheric systems. D. Reidel, PP 415–472

    Google Scholar 

  • Schwartz SE (1988) Henry’s law and sheep’s tails. Atmos Environ 22: 2331–2333

    Article  CAS  Google Scholar 

  • Schwartz SE, Freiberg JE (1981) Mass-transport limitation to the rate of reaction of gases in liquid droplets: application to oxidation of SO2, in aqueous solutions. Atmos Environ 15: 1129–1144

    Article  CAS  Google Scholar 

  • Sigg L, Stumm W (1996) Aquatische Chemie. Eine Einführung in die Chemie wässriger Lösungen und natürlicher Gewässer. Vdf Hochschulverl an der ETH Zürich, Teubner, Stuttgardt

    Google Scholar 

  • Smith RA (1872) Air and rain-the beginning of a chemical climatology. Longmans, Green, London

    Google Scholar 

  • Sörensen SPL (1909) Enzymstudien II. Über die Messung und die Bedeutung der Wasserstoffionen-Konzentration bei enzymatischen Prozessen. Biochem Z 21: 131–199

    Google Scholar 

  • Stöckhardt A (1871) Untersuchung über die schädliche Einwirkung des Hütten-und Steinkohlenrauches auf das Wachstum der Pflanzen, insbesondere der Fichte und Tanne. Tharandter Forstl Jahrbuch 21, 218 pp

    Google Scholar 

  • Stumm W, Morgan JJ (1981)Aquatic chemistry. An introduction emphasizing chemical equilibria in natural waters. 2ndedition, Wiley-Interscience

    Google Scholar 

  • Stumm W, Morgan JJ, Schnoor LD (1983) Saurer Regen, eine Folge der Störung hydrogeochemischer Kreisläufe. Naturwiss 70: 216–223

    Article  CAS  Google Scholar 

  • Ullrich B, Pankrath J (eds) (1983) Effects of accumulation of air pollutants in forest ecosystems. D. Reidel Publ Corp. Dordrecht

    Google Scholar 

  • Vermeulen AT, Wyers GP, Römer FG, Leeuwen NFM van, Draaijers GPL, Erisman JW (1997) Fog deposition on a coniferous forest in the Netherlands. Atmos Environ 31:375–386

    Article  Google Scholar 

  • Waldman KE, Munger JW, Jacob DJ (1992) Measurement methods for atmospheric acidity and acid deposition. In: Radojevic DJ, Harrison DJ (eds) Atmospheric acidity-sources, consequences and abatement. Elsevier, London, New York, pp 205–244

    Google Scholar 

  • Wicke E, Eigen DJ, Ackermann T (1954) über den Zustand des Protons (Hydroniumions) in wäßriger Lösung. Z Phys Chem 1:343–364

    Article  Google Scholar 

  • Wilkins ET (1954) Air pollution and the London fog of December 1952. J R Sanitary Inst 74, 1

    CAS  Google Scholar 

  • Winkler P (1981) Deposition of acid in precipitation. In: Georgii HW, Pankrath J (eds) Deposition of Atmospheric Pollutants. D Reidel, Dordrecht, pp 67–76

    Google Scholar 

  • Winkler P (1983) Der Säuregehalt von Aerosol, Nebel und Niederschlägen. In: Saure Niederschläge-Ursachen und Wirkungen, VDI-Berichte 500, pp 141–147

    Google Scholar 

  • Wislicenus H, Schwarz O, Sertz H, Schröder F, Müller F, Bender F (1916) Experimentelle Rauchschäden. Versuche über die äußeren und inneren Einwirkungen von Ruß, sauren Nebeln und stark verdünnten Gasen auf die Pflanze. In: Wislicenus H (ed) Sammlung von Abhandlungen über Abgase von Rauchschäden, Heft to. Paul Parey, Berlin

    Google Scholar 

  • Zierath R (1981) Inhaltsstoffe atmosphärischer Niederschläge und ihr Einfluß auf die Sicker-und Grundwasserbeschaffenheit am Beispiel ausgewählter Gebiete. Doctor Thesis, Technical University Dresden

    Google Scholar 

  • Zobrist J (1987) Methoden zur Bestimmung der Acidität in Niederschlagsproben. VDI Berichte 608, Düsseldorf, pp 401–420

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Möller, D. (1999). Acid Rain — Gone?. In: Möller, D. (eds) Atmospheric Environmental Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58382-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58382-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63565-6

  • Online ISBN: 978-3-642-58382-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics