Skip to main content

Die Resin Transfer Moulding (RTM)-Technik

  • Chapter
Book cover Faserverbundbauweisen

Zusammenfassung

In den letzten 10 Jahren wies die Verarbeitung von faserverstärkten Kunststoffen enorme Zuwachsraten auf. Ausgelöst wurde diese Tendenz in erster Linie durch erfolgreiche Materialentwicklungen im Bereich der Kunststoffe und Fasermaterialien [6.1]. Dies machte erst einen Einsatz der steifen und leichten Werkstoffe in der Raumfahrt und Rüstungsindustrie möglich. Durch die Entwiclung von hochwertigen Halbzeugen, insbesondere Prepregs mit hohem Faseranteil, faßten diese neuartigen Materialien auch im zivilen Luftfahrtbereich Fuß. Aufgrund der kleinen Absatzmengen dieser Märkte und der handarbeitsintensiven Verarbeitungstechniken waren die Faserverbunde im Vergleich zu Metallen teuer und breiteten sich daher nur zögernd weiter aus. Die Elektroindustrie begann die hervorragenden Festigkeits-und Isolationswerte von Glasfaserverbunden zu nutzen. Dann folgte die Sportartikel-,und Luxusgüterindustrie, die wesentlich zur Akzeptanz dieser Werkstoffe in der Bevölkerung beitrug [6.2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Flemming, M.; Ziegmann, G.; Roth, S.: Halbzeuge und Bauweisen, Faserverbundbauweisen, Springer Verlag, Berlin Heidelberg, vol. 2, 1996.

    Google Scholar 

  2. Hintermann M.: Erforschung und Entwicklung eines neuen Injektionsprozesses für offeneund geschlossene Faserverbundstrukturen einschliesslich der zugehörigen Simulationstechnikparameter, Dissertation, ETH Zürich, 1998

    Google Scholar 

  3. Ziegmann, G.: Automatisierungskonzepte für Faserverbundbauweisen, 10th International Conference on Engineering Design, Praha, 1995, vol. 3, 1090–1095.

    Google Scholar 

  4. Flemming, M.: Entwicklung und Anwendungsmöglichkeiten von Bauweisen aus faserverstärkten Werkstoffen, 7. Jahrestag Deutsche Gesellschaft für Luft-und Raumfahrt, DGLR-Jahrbuch, Bonn, 1974.

    Google Scholar 

  5. Flemming, M.: Produkt-und Prozessinnovationen mit anisotropen Strukturen, 10th International Conference on Engineering Design, Praha, 1995, vol. 3, 1079–1089.

    Google Scholar 

  6. Hintermann, M.; Ziegmann, G.: Resin Transfer Moulding (RTM), 10th International Conference on Engineering Design, Praha, 1995, vol. 3, 1225–1230.

    Google Scholar 

  7. Hintermann, M.; Bucher, M.; Renker, M.; Weiblen, F.; Ziegmann, G.: Latest developments in RTM- and thermoforming-processes for automotive applications, 6th European Congress on Lightweight and Small Cars - The Answer to Future Needs, Cernobbio, Italy, 1997, vol. 2, 647–656.

    Google Scholar 

  8. Kötte, R.: Der Resin-Transfer-Molding-Prozess, Analyse eines Harzinjektions-verfahrens, Dissertation, RWTH Aachen, 1991

    Google Scholar 

  9. Dyckhoff, J.: Resin-Transfer-Moulding - Beitrag zur Verbesserung der Oberflächenqualität, Dissertation, RWTH, Aachen, 1995

    Google Scholar 

  10. Mapleston, P.: Improved Preform Technology Boosts Prospects for High-Speed RTM, S-RIM, Modern Plastics International, 19, 11, 1989, p. 48–52.

    Google Scholar 

  11. Schell, P.L.; Dockum, J.F.; Carley, E.P.: Preforming for Liquid Composite Molding, 45th Annual Conference, Composite Institute, SPI, 1990, Session 9-B, 1–8.

    Google Scholar 

  12. Flury, M.: BMW-Roadster Z1 im Kunststoffkleid, Kunststoffe - Plastics, 77, 12, 1987, p. 18–19.

    Google Scholar 

  13. Woite, B.; Schönleber, G.: BMW Z1 - Ein klassischer Roadster mit innovativen Kunststoffanwendungen., Kunststoffe in Fahrzeugbau - Technik und Wirtschaftlichkeit, VDI-Verlag, Düsseldorf, 1988.

    Google Scholar 

  14. Macosko, C.W.: RIM - Fundamentals of Reaction Injection Molding, Hanser Verlag, 1989.

    Google Scholar 

  15. Institut für Kunststoffverarbeitung, A., Ed., RTM/S-RIM: Serienfertigung von Faserverbundbauteilen (VDI Verlag, Düsseldorf, 1996).

    Google Scholar 

  16. Flemming, M.; Ziegmann, G.; Roth, S.: Fasern und Matrices., Faserverbund-bauweisen, Springer Verlag, Berlin Heidelberg, vol. 1, 1995.

    Google Scholar 

  17. Bäriswyl, R., persönliche Mitteilung, (SIKA Baustoffe, 1997).

    Google Scholar 

  18. Perry, S.J.; Castro, J.M.: A Viscosimeter for fast Polymerizing Systems, Journal of Rheology, 29, 1, 1985, p. 19–23.

    CAS  Google Scholar 

  19. Macosco, C.W.: Insights into molding RIM materials, Plastics Engineering, 39, 4, 1983, p. 21–25.

    Google Scholar 

  20. Begemann, M.: Langfaserverstärkung im RIM-Verfahren, RWTH, Aachen, 1989

    Google Scholar 

  21. Bernardini, S.; Guillon, D.: Reinforcement Choice and Cost Analysis for the Resin Injection Process, 12th Reinforced Plastics Congress, 1980, 35–38.

    Google Scholar 

  22. Sayers, D.R.; Howard, R.D.: The Potential of Mass Production with Resin Transfer Molding using new Methacrylate Based Resins, 40th Annual Conference, 1985, vol. Session 18-B, 1–5.

    Google Scholar 

  23. Howard, R.D.: The Development of Low Profile Methacrylate Resins for Use in RTM and Cold Press Molding, 41th Annual Conference, 1986, vol. Session 19-A, 1–5.

    Google Scholar 

  24. Saitou, T.; Kayano, T.; Kagaya, K.; Owen, G.E.: Novel Resin System for High-Speed RTM, 45th Annual Conference, 1990, vol. Session 14-D, 14.

    Google Scholar 

  25. Babbington, D.A.; Enos, J.; Cox, J.M.; Barron, J.: Fast-Cure Vinyl Ester Meets Automotive Structural Demands, Modern Plastics International, 17, 10, 1987, p. 106–110.

    Google Scholar 

  26. Babbington, D.A.; Cox, J.M.; Enos, J.H.: High speed Resin Transfer Molding of vinyl ester resins, AUTOCOM ‘87, 1987, vol. Session 351, 1–13.

    Google Scholar 

  27. Heissler, H.: Verstärkte Kunststoffe in der Luft-und Raumfahrttechnik, Kohlhammerverlag, 1986

    Google Scholar 

  28. Dunbar, S.G.: Glass reinforcements for producing RTM parts, Plastics Engineering, 40, 9, 1984, p. 45–47.

    Google Scholar 

  29. Hörsting, K.; Wulhorst, B.; Franzke, G.; Offermann, P.: New Types of Textile Fabrics for Fiber Composites, SAMPE Journal, 29, 1, 1993, p. 711.

    Google Scholar 

  30. Shafi, V.: Beitrag zur Charakterisierung der Permeabilität flächiger Verstärkungsmaterialien, Universität Kaiserslautern, Kaiserslautern, 1996

    Google Scholar 

  31. Du, G.-W.; Ko, F.K.: Analysis and Design of 2-D Braided Preforms for Composite Reinforcement, TEXCOMP-2, Leuven, 1994.

    Google Scholar 

  32. Ko, F.K., Ed., Braiding, vol. 1, Composites.

    Google Scholar 

  33. Ko, F.K.: Advanced Braiding, TEXCOMP-2, Leuven (Belgium), 1994.

    Google Scholar 

  34. Obolenski, B.; Schneider, H.; Brandt, J.: A new generation of braiding machines, TEXCOMP-2, Leuven, 1994.

    Google Scholar 

  35. Uozumi, T.; Fujita, A.; Yokoyama, A.; Hamada, H.; Maekawa, Z.: Integrated Braided Composite Technology - Simulation, Fabrication and Strength -, TEXCOMP-2, Leuven, 1994.

    Google Scholar 

  36. Kleinholz, R.; Decker, H.; Huppertz, K.; Koch, W.: Realisierung von GFK-Teilen mit Textilglas-Vorformlingen, AVK-Jahrestagung, 1984, 14.1–14.6.

    Google Scholar 

  37. Fujita, A.; Hamada, H.; Zenichiro, M.; Ohishibashi, H.; Ikeda, Y.: Mechanical Properties of Notched Triaxial Woven Fabric Composites, TEXCOMP-2, Leuven (Belgium), 1994.

    Google Scholar 

  38. Fujita, A.; Hamada, H.; Zenichiro, M.: Tensile Properties of Carbon Fiber Triaxial Woven Fabric Composites, Composites Materials, 27, 15, 1993, p. 1428–1442.

    CAS  Google Scholar 

  39. Hill, B.J.; Mclllhagger, R.; Harper, C.M.: Weaving three dimensional fabrics for preform construction, TEXCOMP-2, Leuven, Belgium, 1994.

    Google Scholar 

  40. Hill, B.J.; McIllhagger, R.; McLaughlin, P.: Weaving multilayer fabrics fot reinforcement of engineering components, Composites Manufacturing, 4, 4, 1993, p. 227–232.

    Google Scholar 

  41. Koch, W.: Stand der Technik zur Verstärkung von PUR-Schaumstoffen-mit Textilglasmatten, DIF, Deutsches Industrieforum für Technologie, Würzburg, 1990.

    Google Scholar 

  42. Flemming, T.: Vergleich der mechanischen Eigenschaften und des Umformverhaltens zwischen gerichteten kurz-und langfaserverstärkten Thermoplasten, Dissertation, TU München/ETH Zürich, 1994

    Google Scholar 

  43. Niedermeier, M.E.: Analyse des Diaphragmaformens kontinuierlich faserverstärkter Hochleistungsthermoplaste, Dissertation, TU München/ETH Zürich, 1995

    Google Scholar 

  44. Breiing, A.; Flemming, M.: Theorie und Methoden des Konstruierens, Springer Verlag, 1993.

    Google Scholar 

  45. Flemming, M.; Ziegmann, G.: Design and Manufacturing Concepts with Modern Anisotropic Materials, 7th International SAMPE Europe Conference, Basel, Switzerland, 1996.

    Google Scholar 

  46. Neder, L.: Technologie des Schneidens von Prepregs mit ultraschallerregten Klingen, Dissertation, RWTH Aachen, 1990

    Google Scholar 

  47. Kesselring, F.: Bewertung von Konstruktionen, VDI-Verlag, Düsseldorf, 1951.

    Google Scholar 

  48. Kesselring, F.: Die starke Konstruktion, VDI-Verlag, Düsseldorf, 1986.

    Google Scholar 

  49. Berthet, G.; Blanc, A.: Resin Transfer Moulding (R.T.M.), Vetrotex International Application Lab., Broschüre, 1994.

    Google Scholar 

  50. Cai, Z.: Analysis of Mold Filling in RTM Process, Composite Materials, 26, 9, 1992, p. 1310–1373.

    CAS  Google Scholar 

  51. Rice, E.V.; Owen, M.J.; Pickering, S.J.: Simultaneous Engineering of Components and Tooling for Resin Transfer Moulding (RTM) Composites, Engineering Systems Design and Analysis Conference, London, American Society of Mechanical Engineers, 1994, vol. 2, 269–283.

    Google Scholar 

  52. Lee, L.J.; W.B., Y.; Lin, R.J.: Mold filling and cure modeling of RTM and SRIM processes, Composite Structures, 27, 1994, p. 109–120.

    Google Scholar 

  53. Owen, M.J.; Rice, E.V.; Rudd, C.D.; Middleton, V.: Resin Transfer Moulding for Automobile Manufacture: Reality and Simulation, Third International Conference on Computer Aided Design in Composite Material Technology, Newark, Delaware, USA, 1992, 121–142.

    Google Scholar 

  54. Trochu, F.; Gauvin, R.; Zhang, Z.: Simulation of Mold Filling in Resin Transfer Molding by Non-Conforming Finite Elements, Third International Conference on Computer Aided Design in Composite Material Technology, Newark, Delaware, USA, 1992, 109–120.

    Google Scholar 

  55. Gauvin, R.; Trochu, F.; Boudreault, J.-F.; Carreau, P.: Finite Element Simulation of the Resin Transfer Molding Process

    Google Scholar 

  56. Molina, G.; Boero, G.; Smeriglio, P.: Resin transfer molding for body parts: An integrated approach using CAE methodology, Journal of Reinforced Plastics and Composites, 13, 8, 1994, p. 681–697.

    Google Scholar 

  57. Han, K.; Wu, C.-H.; Lee, L.J.: Characterization and simulation of Resin Transfer Molding - race tracking and dry spot formation, Advanced composites technologies: Proceedings of the 9th annual ASM/ESD advanced composite conference, Dearborn, Michigan, USA, 1993, 19–36.

    Google Scholar 

  58. Cai, Z.: Simplified Mold Filling Simulation in Resin Transfer Molding, Composite Materials, 26, 17, 1992, p. 2606–2630.

    CAS  Google Scholar 

  59. Young, W.B.; Han, K.; Fong, L.H.; Lee, L.J.; Liou, M.J.: Flow Simulation in Molds with Preplaced Fiber Mats, Polymer Composites, 12, 6, 1991, p. 391–403.

    CAS  Google Scholar 

  60. Thomann, H.H.: Strömungslehre, Vorlesungs-Skript der ETH Zürich, in: AMIV-Verlag, 1975, 11 ff.

    Google Scholar 

  61. Michaeli, W.; Hammes, V.; Kirberg, K.; Kötte, R.; Osswald, T.A. et al.: Prozessimulation beim RTM-Verfahren, Kunststoffe, 79, 8, 1989, p. 739–742.

    CAS  Google Scholar 

  62. Tucker, C.L.; Dessenberger, R.B.: Governing Equations for Flow and Heat Transfer in Stationary Fiber Beds, in: Flow and Rheology in Polymer Composites Manufacturing, Advani, S.G., Ed., Elsevier, Amsterdam, vol. 10, 1994, 257 ff.

    Google Scholar 

  63. Bird, R.B.; Stewart, W.E.; Lightfood, E.N.: Transport Phenomena, Wiley, New York, 1960.

    Google Scholar 

  64. Darcy, H.: Les fontaines publiques de la ville de Dijon, Dalmont, Paris, 1856.

    Google Scholar 

  65. Trochu, F.; Gauvin, R.; Gao, D.-M.: Numerical Analysis of the Resin Transfer Moulding Process by the Finite Element Method, Advances in Polymer Technology, 12, 4, 1993, p. 329–342.

    CAS  Google Scholar 

  66. Weitzenböck, J.R.; Shenoi, R.A.; Wilson, P.A.: Flow Front Measurement in RTM, 1995, p..

    Google Scholar 

  67. Leek, R.; Carpenter, G.; Rubel, A.; Donnellan, T.: Simulation of edge flow effects in Resin Transfer Molding, 25th International SAMPE Technical Conference, Philadelphia, USA, 1993, 233–245.

    Google Scholar 

  68. Diallo, M.L.; Gauvin, R.; Trochu, F.: Key Factors Affecting the Permeability Measurement in Continuous Fiber Reinforcements, 11th International Conference on Composite Materials, Gold Coast, Australia, 1997.

    Google Scholar 

  69. Long, A.C.; Blanchard, P.J.; Rudd, C.D.; Smith, P.: Combined Drape and Flow Modelling for Liquid Composite Moulding, 5th International Conference on Automated Composites, Glasgow, 1997, 51–58.

    Google Scholar 

  70. Lee, L.J.: Material Characterization in Liquid Composite Molding, Macromolecular Chemistry, Macromolecular Symposium, 1993, vol. 68, 169–191.

    CAS  Google Scholar 

  71. Lenormand, R.; Zarcone, C.; Sarr, A.: Mechanisms of the Displacement of One Fluid by Another in a Network of Capillary Ducts, Journal of Fluid Mechanics, 135, 1983, p. 337–353.

    CAS  Google Scholar 

  72. Lenormand, R.; Toubol, E.; Zarcone, C.: Numerical Models and Experiments on Immiscible Displacements in Porous Media, Journal of Fluid Mechanics, 189, 1988, p. 165–187.

    CAS  Google Scholar 

  73. Koplik, J.; Lasseter, T.J.: One-and Two-phase Flow in Network Models of Porous Media, Chemical Engineer Communication, 26, 1984, p. 285–295.

    CAS  Google Scholar 

  74. Blumenfeld, R.; Bergmann, D.J.: Fluid Flow in a Random Porous Medium: A Network Model and Effective Medium Approximation, Journal of Applied Physics, 62, 5, 1987, p. 1616–1621.

    Google Scholar 

  75. Carman, P.C.: Fluid Flow Through Granular Beds, Transactions of the Institution of Chemical Engineers, 1937.

    Google Scholar 

  76. Gutowski, T.G.; Cai, Z.; Bauer, S.; Boucher, D.; Kingery, J. et al.: Consolidation Experiments for Laminate Composites, Journal of Composite Materials, 21, 1987, p. 650–669.

    CAS  Google Scholar 

  77. Williams, J.G.; Morris, C.E.M.; Ennis, B.C.: Liquid Flow Through Aligned Fiber Beds, Polymer Engineering and Science, 14, 6, 1976, p. 413–419.

    Google Scholar 

  78. Lam, R.C.; Kardos, J.L.: The Permeability and Compressibility of Aligned and Cross-plied Fiber Beds During Processing of Composites, Polymer Engineering and Science, 31, 14, 1991, p. 1064–1070.

    CAS  Google Scholar 

  79. Lam, R.C.; Kardos, J.L.: The Permeability of Aligned and Cross-plied Fiber Beds During Processing of Continous Fiber Composites, Proceedings of American Society for Composites 3rd Technical Conference, Seattle, 1988, 1–10.

    Google Scholar 

  80. Skartsis, L.; Kardos, J.L.; Khomami, B.: Resin Flow Through Fiber Beds During Composite Manufacturing Processes, Part I: Review of Newtonian Flow Through Fiber Beds, Polymer Engineering and Science, 32, 4, 1992, p. 221–230.

    CAS  Google Scholar 

  81. Kozeny, J.: Sitzungsbericht, Wiener Akad. Wiss., Abt IIa, 1927.

    Google Scholar 

  82. Dave, R.; Kardos, J.L.; Dudukovic, M.P.: A Model for Resin Flow During Composite Processing. Part 2: Numerical Analysis for Unidirectional Graphite/Epoxy Laminates, Polymer Composites, 8, 2, 1981, p. 123–132.

    Google Scholar 

  83. Phelan Jr., F.R.: Modeling of Microscale Flow in Fibrous Porous Media, Advanced Composite Material: New Developments and Applications Conference Proceedings, Detroit, Michigan, USA, Sept. 30. - Oct. 3. 1991, 175–185.

    Google Scholar 

  84. Lundström, T.S.: SICOMP Technical Report 91–001, Swedish Institute of Composites, 1991.

    Google Scholar 

  85. Beavers, G.S.; Joseph, D.D.: Boundary Conditions at a Naturally Permeable Wall, Journal of Fluid Mechanics, 30, 1967, p. 197–207.

    Google Scholar 

  86. Gebart, B.R.: Permeability of Unidirectional Reinforcements for RTM, Journal of Composite Materials, 26, 8, 1992, p. 1100–1133.

    CAS  Google Scholar 

  87. Wu, C.-J.; Hourng, L.-W.: Permeable Boundary Condition for Numerical Simulation in Resin Transfer Molding, Polymer Engineering and Science, 35, August, 1995, p. 1272–1281.

    CAS  Google Scholar 

  88. Trochu, F.; Hammami, A.; Benoit, Y.: Prediction of fibre orientation and net shape definition of complex composite parts, Composites, 27A, Part A, 1996

    Google Scholar 

  89. Ferland, P.; Guittard, D.; Trochu, F.: Concurrent Methods for Permeability Measurement in Resin Transfer Molding, Polymer Composites, 1995

    Google Scholar 

  90. Chan, A.W.; Hwang, S.-T.: Anisotropic In-plane Permeability of Fabric Media, Depatment of Chemical Engineering, University of Cincinnati.

    Google Scholar 

  91. Wang, T.; Wu, C.H.; Patel, N.; Lee, L.J.: Fiber Wetting and Permeability Analysis in Liquid Composite Molding, Proceedings of the 8th Advanced Composites Conference, Chicago, Illinois, USA, 2–5. November 1992, 47–55.

    Google Scholar 

  92. Lekakou, C.; Johari, M.A.K.; Norman, D.; Bader, M.G.: Measurement techniques and effects on in-plane permeability of woven cloths in resin transfer moulding, Composites, 27A, Part A, 1996, p. 401–408.

    Google Scholar 

  93. Diallo, M.L.; Gauvin, R.; Trochu, F.: Experimental Analysis and Simulation of Flow through Multi-layer Fiber Reinforcements in Liquid Composite Molding, Polymer Composites, 1997

    Google Scholar 

  94. Gauvin, R.; Trochu, F.; Lemenn, Y.; Diallo, M.L.: Permeability Measurement and Flow Simulation Through Fiber Reinforcement, Polymer Composites, 17, 1, 1996, p. 34–42.

    CAS  Google Scholar 

  95. Lebrun, G.; Gauvin, R.; Kendall, K.N.: Experimental investigation of resin temperature and pressure during filling and curing in a flat steel RTM mould, Composites, 27A, Part A, 1996, p. 347–356.

    Google Scholar 

  96. Bréard, J.: Modélisation numérique de la phase de remplissage du procédé R.T.M. et détermination expérimentale de la perméabilité d’un renfort fibreux, Dissertation, Ecole Polytechnique, Montréal, 1997

    Google Scholar 

  97. Young, W.-B.: Three-Dimensional Nonisothermal Mold Filling Simulations in Resin Transfer Molding, Polymer Composites, 15, 2, 1994, p. 118–127.

    CAS  Google Scholar 

  98. Hourng, L.-W.; Chang, C.-Y.: Numerical simulation of Resin Injection Molding in molds with preplaced fiber mats, Reinforced Plastics and Composites, 12, 10, 1993, p. 1081–1095.

    CAS  Google Scholar 

  99. Flemming, M.; Wintermantel, E.: Naturanaloge Konstruktionen, Bauweisen und medizinische Implantate, Vorlesungsskript, Institut für Konstruktion und Bauweisen, ETH Zürich.

    Google Scholar 

  100. Zogg, M.: Erforschung von Verarbeitungskonzepten von zukunftsorientierten Sandwichsystemen mit Schaumkern und Faserverbund-Deckschichten, Abschlussbericht KTI-Projekt 2220.2, Institut für Konstruktion und Bauweisen, ETH Zürich, 1995.

    Google Scholar 

  101. Michaeli, W.: Maschinen und Anlagen zur Fertigung von Schaumkunststoffen. Vorlesungsunterlagen Kunststoffverarbeitung III, RWTH Aachen, 1995.

    Google Scholar 

  102. Pip, W.: Verfahren zum Herstellen von Faserverbundbauteilen, Kunststoffe, 3, 1988

    Google Scholar 

  103. Lehmann, U.: RTM-SRIM, Harzinjektionsverfahren für die Serienfertigung von Faserverbundbauteilen; Sonderverfahren: SchlauchblasRTM, Institut für Kunststoffverarbeitung RWTH Aachen, 1996.

    Google Scholar 

  104. Brun, U.: Auslegung eines Fahrradhilfsrahmens aus Faserverbundkunststoff und Herstellung im Schlauchblasverfahren, Studienarbeit, RWTH Aachen, 1992, Betreuer: M. Jehrke.

    Google Scholar 

  105. Michaeli, W.: Starke Krümmung - Herstellen von Hohlkörpern aus textilen Halbzeugen im Formwerkzeug mit Hilfe von Druckluft, Maschinenmarkt, 100, 1994, p. 32–35.

    Google Scholar 

  106. Michaeli, W.; Dyckhoff, J.; Jehrke, M.: Continuous fibre reinforced truck balancer produced with a combined RTM and bladder moulding technology

    Google Scholar 

  107. Michaeli, W.; Lehmann, U.: Combined moulding speeds hollow parts, Reinforced Plastics, March, 1996, p. 40–43.

    Google Scholar 

  108. Seibert, R.: Persönliche Information, Umformprozess für Rohacell, Röhm GmbH, 1996

    Google Scholar 

  109. Lehmann, U.; Michaeli, W.: Improved Processing of Resin Transfer Molding for the Production of Hollow Parts with inflatable bladders, 42nd International SAMPE Symposium, Anaheim, USA, 1997, 13–23.

    Google Scholar 

  110. Lehmann, U.; Michaeli, W.: Automated Production of Hollow Composite Parts with Complex Geometry in Resin Transfer Moulding, 5th International Conference on Automated Composites, Glasgow, 1997, 43–50.

    Google Scholar 

  111. Seemann, W.: SCRIMP advancing composites, Firmenschrift, SCRIMP Systems L.L.C., Wyoming, USA

    Google Scholar 

  112. Lazarus, P.: Reporting from the Resin Infusion Front, Professional Boatbuilder, 44, Dezember/Januar 1997

    Google Scholar 

  113. Lazarus, P.: Infusion, Professional Boatbuilder, 31, Oktober/November 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flemming, M., Ziegmann, G., Roth, S. (1999). Die Resin Transfer Moulding (RTM)-Technik. In: Faserverbundbauweisen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58371-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58371-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63557-1

  • Online ISBN: 978-3-642-58371-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics