Skip to main content

Abstract

Steered molecular dynamics (SMD) induces unbinding of ligands and conformational changes in biomolecules on time scales accessible to molecular dynamics simulations. Time-dependent external forces are applied to a system, and the responses of the system are analyzed. SMD has already provided important qualitative insights into biologically relevant problems, as demonstrated here for applications ranging from identification of ligand binding pathways to explanation of elastic properties of proteins. First attempts to deduce potentials of mean force by discounting irreversible work performed on the system are summarized. The non-equilibrium statistical mechanics underlying analysis of SMD data is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajay, and Murcko, M.: Computational methods to predict binding free energy in ligand-receptor complexes. J. Med. Chem. 38 (1995) 4953–4967

    Article  Google Scholar 

  2. Allen, P. G., Laham, L. E., Way, M., and Janmey, P. A.: Binding of phosphate, aluminum fluoride, or beryllium fluoride to F-actin inhibits severing by gelsolin. J. Biol. Chem. 271 (1996) 4665–4670

    Article  Google Scholar 

  3. Andersson, M. L., Nordström, K., Demczuck, S., Harbers, M., and Vennström, B.: Thyroid hormone alters the DNA binding properties of chicken thyroid hormone receptors α and β. Nucl. Acids Res. 20 (1992) 4803–4810

    Article  Google Scholar 

  4. Baljon, R. C. A., and Robbins, M. O.: Energy dissipation during rupture of adhesive bonds. Science. 271 (1996) 482–484

    Article  Google Scholar 

  5. Baisera, M., Stepaniants, S., Izrailev, S., Oono, Y., and Schulten, K.: Reconstructing potential energy functions from simulated force-induced unbinding processes. Biophys. J. 73 (1997) 1281–1287

    Article  Google Scholar 

  6. Baisera, M. A., Wriggers, W., Oono, Y., and Schulten, K.: Principal component analysis and long time protein dynamics. J. Phys. Chem. 100 (1996) 2567–2572

    Article  Google Scholar 

  7. Bell, G. L: Models for the specific adhesion of cells to cells. Science. 200 (1978) 618–627

    Article  Google Scholar 

  8. Binning, G., Quate, C. F., and Gerber, G.: Atomic force microscope. Phys. Rev. Lett. 56 (1986) 930–933

    Article  Google Scholar 

  9. Block, S., and Svoboda, K.: Biological applications of optical forces. Ann. Rev. Biophys. Biomol. Struct. 23 (1994) 247–285

    Article  Google Scholar 

  10. Booth, P. J., Farooq, A., and Flitsch, S. L.: Retinal binding during folding and assembly of the membrane protein bacteriorhodopsin. Biochemistry. 35 (1996) 5902–5909

    Article  Google Scholar 

  11. Brent, G. A., Dunn, M. K., Harney, J. W., Gulick, T., and Larsen, P. R.: Thyroid hormone aporeceptor represses T3 inducible promoters and blocks activity of the retinoic acid receptor. New Biol. 1 (1989) 329–336

    Google Scholar 

  12. Cevc, G., and Marsh, D.: Phospholipid Bilayers: Physical Principles and Models. John Wiley & Sons, New York, 1987.

    Google Scholar 

  13. Chang, C.-H., Jonas, R., Govindjee, R., and Ebrey, T.: Regeneration of blue and purple membranes for deionized bleached membranes of halobacterium halobium. Photochem. Photobiol. 47 (1988) 261–265

    Article  Google Scholar 

  14. Chilcotti, A., Boland, T., Ratner, B. D., and Stayton, P. S.: The relationship between ligand-binding thermodynamics and protein-ligand interaction forces measured by atomic force microscopy. Biophys. J. 69 (1995) 2125–2130

    Article  Google Scholar 

  15. Cohen, N., Blaney, J., Humblet, C., Gund, P., and Barry, D.: Molecular modeling software and methods for medicinal chemistry. J. Med. Chem. 33 (1990) 883–894

    Article  Google Scholar 

  16. Colman, P.: Structure-based drug design. Curr. Opinion Struct. Biol. 4 (1994) 868–874

    Article  Google Scholar 

  17. Damm, K., Thompson, C. C., and Evans, R. M.: Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature. 339 (1989) 593–597

    Article  Google Scholar 

  18. Dancker, P., and Hess, L.: Phalloidin reduces the release of inorganic phosphate during actin polymerization. Biochim. Biophys. Acta. 1035 (1990) 197–200

    Article  Google Scholar 

  19. Dennis, E. A.: Phospholipases. In The enzymes vol. XVI, 1983.

    Google Scholar 

  20. Devreotes, P. N., and Zigmond, S. H.: Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Ann. Rev. Cell Biol. 4 (1988) 649–686

    Article  Google Scholar 

  21. Eaton, W. A., Munos, V., Thompson, P. A., Chan, C.-K., and Hofrichter, J.: Submillisecond kinetics of protein folding. Curr. Opinion Struct. Biol. 7 (1997) 10–14

    Article  Google Scholar 

  22. Elber, R.: Reaction path studies of biological molecules. In Recent developments in theoretical studies of proteins (Advanced series in physical chemistry, Vol. 7). R. Elber, editor. World Scientific, Singapore, 1996.

    Google Scholar 

  23. Evans, E., Berk, D., and Leung, A.: Detachment of agglutininbonded red blood cells. Biophys. J. 59 (1991) 838–848

    Article  Google Scholar 

  24. Evans, E., Ritchie, K., and Merkel, R.: Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68 (1995) 2580–2587

    Article  Google Scholar 

  25. Evans, E., and Ritchie, K.: Dynamic strength of molecular adhesion bonds. Biophys. J. 72 (1997) 1541–1555

    Article  Google Scholar 

  26. Florin, E.-L., Moy, V. T., and Gaub, H. E.: Adhesion force between individual ligand-receptor pairs. Science. 264 (1994) 415–417

    Article  Google Scholar 

  27. Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. Springer-Verlag, New York, 1985.

    Google Scholar 

  28. Gilson, M., Given, J., Bush, B., and McCammon, J.: The statistical-thermodynamic basis for computation of binding affinities: A critical review. Biophys. J. 72 (1997) 1047–1069

    Article  Google Scholar 

  29. Green, N. M.: Avidin. Advan. Prot. Chem. 29 (1975) 85–133

    Article  Google Scholar 

  30. Grubmüller, H.: Predicting slow structural transitions in macromolecular systems: Conformational Flooding. Phys. Rev. E. 52 (1995) 2893–2906

    Article  Google Scholar 

  31. Grubmüller, H., Heymann, B., and Tavan, P.: Ligand binding and molecular mechanics calculation of the streptavidin-biotin rupture force. Science. 271 (1996) 997–999

    Article  Google Scholar 

  32. Hanessian, S., and Devasthale, P.: Design and synthesis of novel, pseudo C2 symmetric inhibitors of HIV protease. Bioorg. Med. Chem. Lett. 6 (1996) 2201–2206

    Article  Google Scholar 

  33. Humphrey, W. F., Dalke, A., and Schulten, K.: VMD-Visual Molecular Dynamics. J. Mol. Graphics. 14 (1996) 33–38

    Article  Google Scholar 

  34. Improta, S., Politou, A., and Pastore, A.: Immunoglobulinlike modules from titin I-band: extensible components of muscle elasticity. Structure. 4 (1996) 323–337

    Article  Google Scholar 

  35. Israelachvili, J. N.: Intermolecular and Surface Forces. Academic Press, London, 1992.

    Google Scholar 

  36. Isralewitz, B., Izrailev, S., and Schulten, K.: Binding pathway of retinal to bacterio-opsin: A prediction by molecular dynamics simulations. Biophys. J. 73 (1997) 2972–2979

    Article  Google Scholar 

  37. Izrailev, S., Stepaniants, S., Baisera, M., Oono, Y., and Schulten, K.: Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72 (1997) 1568–1581

    Article  Google Scholar 

  38. Jain, M. K., Gelb, M., Rogers, J., and Berg, O.: Kinetic basis for interfacial catalysis by phospholipase A2. Methods in enzymology. 249 (1995) 567–614

    Article  Google Scholar 

  39. Jarzynski, C: Equilibrium free-energy differences from nonequilibrium measurements: A master equation approach. Phys. Rev. E. 56 (1997a) 5018–5035

    Article  Google Scholar 

  40. Jarzynski, C: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78 (1997b) 2690–2693

    Article  Google Scholar 

  41. Kellermayer, M., Smith, S., Granzier, H., and Bustamante, C: Folding-unfolding transition in single titin modules characterized with laser tweezers. Science. 276 (1997) 1112–1116

    Article  Google Scholar 

  42. Kumar, S., Bouzida, D., Swendsen, R. H., Kolman, P. A., and Rosenberg, J. M.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comp. Chem. 13 (1992) 1011–1021

    Article  Google Scholar 

  43. Labeit, S., Kolmerer, B., and Linke, W.: The giant protein titin: emerging roles in physiology and pathophysiology. Circulation Research. 80 (1997) 290–294

    Article  Google Scholar 

  44. Lebon, F., Vinals, C., Feytmans, E., and Durant, F.: Computational drug design of new HIV-1 protease inhibitors. Arch. Phys. Biochem. 104 (1996) B44.

    Google Scholar 

  45. Leckband, D. E., Schmitt, F. J., Israelachvili, J. N., and Knoll, W.: Direct force measurements of specific and nonspecific protein interactions. Biochemistry. 33 (1994) 4611–4624

    Article  Google Scholar 

  46. Lu, H., Isralewitz, B., Krammer, A., Vogel, V., and Schulten, K.: Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75 (1998) 662–671

    Article  Google Scholar 

  47. Lüdemann, S. K., Carugo, O., and Wade, R. C.: Substrate access to cytochrome P450cam: A comparison of a thermal motion pathway analysis with molecular dynamics simulation data. J. Mol. Model. 3 (1997) 369–374

    Article  Google Scholar 

  48. Marrink, S.-J., Berger, O., Tieleman, P., and Jähnig, F.: Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics dimulations. Biophys. J. 74 (1998) 931–943

    Article  Google Scholar 

  49. Marrone, T., Briggs, J., and McCammon, J.: Structurebased drug design: Computational advances. Ann. Rev. Pharm. Tox. 37 (1997) 71–90

    Article  Google Scholar 

  50. Maruyama, K.: Connectin/titin, a giant elastic protein of muscle. FASEB J. 11 (1997) 341–345

    Google Scholar 

  51. McCammon, J. A., and Harvey, S. C: Dynamics of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, 1987.

    Book  Google Scholar 

  52. Moy, V. T., Florin, E.-L., and Gaub, H. E.: Adhesive forces between ligand and receptor measured by AFM. Colloids and Surfaces. 93 (1994a) 343–348

    Article  Google Scholar 

  53. Moy, V. T., Florin, E.-L., and Gaub, H. E.: Intermolecular forces and energies between ligands and receptors. Science. 266 (1994b) 257–259

    Article  Google Scholar 

  54. Nadler, W., and Schulten, K.: Theory of Mössbauer spectra of proteins fluctuating between conformational substates. Proc. Natl. Acad. Sci. USA. 81 (1984) 5719–5723

    Article  Google Scholar 

  55. Nelson, M., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L., Skeel, R., Schulten, K., and Kufrin, R.: MDScope-A visual computing environment for structural biology. Comput. Phys. Commun. 91 (1995) 111–134

    Article  Google Scholar 

  56. Nelson, M., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L., Skeel, R. D., and Schulten, K.: NAMD-A parallel, object-oriented molecular dynamics program. J. Supercomputing App. 10 (1996) 251–268

    Article  Google Scholar 

  57. Oberhauser, A. F., Marszalek, P. E., Erickson, H., and Fernandez, J.: The molecular elasticity of tenascin, an extracellular matrix protein. Nature. In Press.

    Google Scholar 

  58. Oesterhelt, D., Tittor, J., and Bamberg, E.: A unifying concept for ion translocation in retinal proteins. J. Bioenerg. Biomemb. 24 (1992) 181–191

    Article  Google Scholar 

  59. Oesterhelt, D., and Schumann, L.: Reconstitution of bacteriorhodopsin. FEBS Lett. 44 (1974) 262–265

    Article  Google Scholar 

  60. Olender, R., and Elber, R.: Calculation of classical trajectories with a very large time step: Formalism and numerical examples. J. Chem. Phys. 105 (1996) 9299–9315

    Article  Google Scholar 

  61. Picot, D., Loll, P. J., and Garavito, M.: The X-ray crystal structure of the membrane protein prostaglandin H 2 synthase-1. Nature. 367 (1994) 243–249

    Article  Google Scholar 

  62. Pollard, T. D., Goldberg, L, and Schwarz, W. H.: Nucleotide exchange, structure, and mechanical properties of filaments assembled from ATP-actin and ADP-actin. J. Biol. Chem. 267 (1992) 20339–20345

    Google Scholar 

  63. Resat, H., Mezei, M., and McCammon, J. A.: Use of the grand canonical ensemble in potential of mean force calculations. J. Phys. Chem. 100 (1996) 1426–1433

    Article  Google Scholar 

  64. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 276 (1997) 1109–1112

    Article  Google Scholar 

  65. Schlitter, J., Engels, M., Krüger, P., Jacoby, E., and Wollmer, A.: Targeted molecular dynamics simulation of conformational change—application to the t ↔ r transition in insulin. Molecular Simulation. 10 (1993) 291–308

    Article  Google Scholar 

  66. Schulten, K., Humphrey, W., Logunov, L, Sheves, M., and Xu, D.: Molecular dynamics studies of bacteriorhodopsin’s photocycles. Israel Journal of Chemistry. 35 (1995) 447–464

    Google Scholar 

  67. Slotboom, A. J., Verheij, H. M., and Haas, G. H. D.: On the mechanism of phospholipase A2. In Phospholipids, J. N. Hawthorne, and G. B. Ansell, editors. Elsevier Biomédical Press, New York. 359–435, 1982

    Google Scholar 

  68. Small, J. V.: Microfilament-based motility in non-muscle cells. Curr. Opinion Cell Biol. 1 (1989) 75–79

    Article  MathSciNet  Google Scholar 

  69. Smith, W., and DeWitt, D.: Prostaglandin endoperoxide H synthases-1 and-2. Adv. Immunol. 62 (1996) 167–215

    Article  Google Scholar 

  70. Stepaniants, S., Izrailev, S., and Schulten, K.: Extraction of lipids from phospholipid membranes by steered molecular dynamics. J. Mol. Model. 3 (1997) 473–475

    Article  Google Scholar 

  71. Strynadka, N., Eisenstein, M., Katchalski-Katzir, E., Shoichet, B., Kuntz, L, Abagyan, R., Totrov, M., Janin, J., Cherfils, J., Zimmerman, F., Olson, A., Duncan, B., Rao, M., Jackson, R., Sternberg, M., and James, M.: Molecular docking programs successfully predict the binding of a β-lactamase inhibitory protein to TEM-1 β-lactamase. Nature Struct. Biol. 3 (1996) 233–239

    Article  Google Scholar 

  72. Thaisrivongs, S., Romero, D., Tommasi, R., Janakiraman, M., Strohbach, J., Turner, S., Biles, C., Morge, R., Johnson, P., Aristoff, P., Tomich, P., Lynn, J., Horng, M., Chong, K., Hinshaw, R., Howe, W., Finzel, B., and Watenpaugh, K.: Structure-based design of HIV protease inhibitors-5,6-dihydro-4-hydroxy-2-pyrones as effective, nonpeptidic inhibitors. J. Med. Chem. 39 (1996) 4630–4642

    Article  Google Scholar 

  73. Theriot, J. A., Mitchison, T. J., Tilney, L. G., and Portnoi, D. A.: The rate of act in-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature. 357 (1992) 257–260

    Article  Google Scholar 

  74. Tskhovrebova, L., Trinick, J., Sleep, J., and Simmons, R.: Elasticity and unfolding of single molecules of the giant protein titin. Nature. 387 (1997) 308–312

    Article  Google Scholar 

  75. Wagner, R., Apriletti, J. W., McGrath, M. E., West, B. L., Baxter, J. D., and Fletterick, R. J.: A structural role for hormone in the thyroid hormone receptor. Nature. 378 (1995) 690–697

    Article  Google Scholar 

  76. Wang, K., McCarter, R., Wright, J., Beverly, J., and Ramirez-Mitchell, R.: Viscoelasticity of the sarcomere matrix of skeletal muscles. Biophys. J. 64 (1993) 1161–1177

    Article  Google Scholar 

  77. Wriggers, W., and Schulten, K.: Protein domain movements: Detection of rigid domains and visualization of hinges in comparisons of atomic coordinates. Proteins: Struc. Func. and Genetics. 29 (1997a) 1–14

    Article  Google Scholar 

  78. Wriggers, W., and Schulten, K.: Stability and dynamics of G-actin: Back door water diffusion and behavior of a subdomain 3/4 loop. Biophys. J. 73 (1997b) 624–639

    Article  Google Scholar 

  79. Wriggers, W., and Schulten, K.: Investigating a back door mechanism of actin phosphate release by steered molecular dynamics. Biophys. J. Submitted.

    Google Scholar 

  80. Xu, D., Phillips, J. C., and Schulten, K.: Protein response to external electric fields: Relaxation, hysteresis and echo. J. Phys. Chem. 100 (1996) 12108–12121

    Article  Google Scholar 

  81. Zhang, L., and Hermans, J.: Hydrophilicity of cavities in proteins. Proteins: Struc. Func. and Genetics. 24 (1996) 433–438

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Izrailev, S. et al. (1999). Steered Molecular Dynamics. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics