A Bunch of Time Integrators for Quantum/Classical Molecular Dynamics

  • Marlis Hochbruck
  • Christian Lubich
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 4)


We present novel time integration schemes for Newtonian dynamics whose fastest oscillations are nearly harmonic, for constrained Newtonian dynamics including the Car-Parrinello equations of ab initio molecular dynamics, and for mixed quantum-classical molecular dynamics. The methods attain favorable properties by using matrix-function vector products which are computed via Lanczos’ method. This permits to take longer time steps than in standard integrators.


Krylov Subspace Newtonian Dynamic Matrix Splitting Time Step Restriction Lanczos Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. C. Andersen. Rattle: A “velocity ” version of the Shake algorithm for molecular dynamics calculations. J. Comp. Phys., 52: 24–34, 1983.zbMATHCrossRefGoogle Scholar
  2. 2.
    H. J. C. Berendsen and J. Mavri. Quantum simulation of reaction dynamics by density matrix evolution. J. Phys. Chem., 97: 13464–13468, 1993.CrossRefGoogle Scholar
  3. 3.
    F. A. Bornemann, P. Nettesheim, and Ch. Schütte. Quantum-classical molecular dynamics as an approximation for full quantum dynamics. J. Ghent. Phys., 105(3): 1074–1083, 1996.Google Scholar
  4. 4.
    F. A. Bornemann and Ch. Schütte. A mathematical investigation of the Car-Parrinello method. Preprint SC 96-19, ZIB Berlin, 1996. To appear in Numer. Math.Google Scholar
  5. 5.
    F. A. Bornemann and Ch. Schütte. On the singular limit of the quantum-classical molecular dynamics model. Preprint SC 96-07, ZIB Berlin, 1996. Submitted to SIAM J. Appl. Math.Google Scholar
  6. 6.
    R. Car and M. Parrinello. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Letter, 55: 2471–2474, 1985.CrossRefGoogle Scholar
  7. 7.
    V. L. Druskin and L. A. Knizhnerman. Krylov subspace approximations of eigenpairs and matrix functions in exact and computer arithmetic. Numer. Lin. Alg. Appl., 2: 205–217, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    B. García-Archilla, J. M. Sanz-Serna, and R. Skeel. Long-time-step methods for oscillatory differential equations. Applied Mathematics and Computation Reports 1996/7, Universidad de Valladolid, 1996.Google Scholar
  9. 9.
    A. Garcia-Vela, R. B. Gerber, and D. G. Imre. Mixed quantum wave packet/classical trajectory treatment of the photodissociation process ArHCl → Ar+H+Cl. J. Chern. Phys., 97: 7242–7250, 1992.CrossRefGoogle Scholar
  10. 10.
    W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math., 3: 381–397, 1961.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    R. B. Gerber, V. Buch, and M. A. Ratner. Time-dependent self-consistent field approximation for intramolecular energy transfer. J. Chem. Phys., 66: 3022–3030, 1982.CrossRefGoogle Scholar
  12. 12.
    M. Hochbruck and Ch. Lubich. On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal., 34: 1911–1925, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    M. Hochbruck and Ch. Lubich. A Gautschi-type method for oscillatory second-order differential equations. Tech. Rep., Universität Tübingen, 1998.Google Scholar
  14. 14.
    M. Hochbruck and Ch. Lubich. Exponential integrators for quantum-classical molecular dynamics. Tech. Rep., Universität Tübingen, 1998. In preparation.Google Scholar
  15. 15.
    M. Hochbruck, Ch. Lubich, and H. Selhofer. Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput., 1998. To appear.Google Scholar
  16. 16.
    J. Hutter, M. E. Tuckerman, and M. Parrinello. Integrating the Car-Parrinello equations. III. Techniques for ultrasoft pseudopotentials. J. Chem. Phys., 102(2): 859–871, 1995.CrossRefGoogle Scholar
  17. 17.
    P. Jungwirth and R. B. Gerber. Quantum dynamics of large polyatomic systems using a classically based separable potential method. J. Chem. Phys., 102: 6046–6056, 1995.CrossRefGoogle Scholar
  18. 18.
    C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bureau Standards, 49: 33–53, 1952.MathSciNetCrossRefGoogle Scholar
  19. 19.
    P. Nettesheim, F. A. Bornemann, B. Schmidt, and Ch. Schütte. An explicit and symplectic integrator for quantum-classical molecular dynamics. Chemical Physics Letters, 256: 581–588, 1996.CrossRefGoogle Scholar
  20. 20.
    P. Nettesheim, Ch. Schütte, M. Hochbruck, and Ch. Lubich. Work in preparation.Google Scholar
  21. 21.
    T. J. Park and J. C. Light. Unitary quantum time evolution by iterative Lanczos reduction. J. Chem. Phys., 85: 5870–5876, 1986.CrossRefGoogle Scholar
  22. 22.
    B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, N.J., 1980.zbMATHGoogle Scholar
  23. 23.
    J. P. Ryckaert, G. Cicotti, and H. J. Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comp. Phys., 23: 327–341, 1977.CrossRefGoogle Scholar
  24. 24.
    M. E. Tuckerman and M. Parrinello. Integrating the Car-Parrinello equations. I. Basic integration techniques. J. Chem. Phys., 101(2): 1302–1315, 1994.CrossRefGoogle Scholar
  25. 25.
    M. E. Tuckerman and M. Parrinello. Integrating the Car-Parrinello equations. II. Multiple time scale techniques. J. Chem. Phys., 101(2): 1316–1329, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Marlis Hochbruck
    • 1
  • Christian Lubich
    • 1
  1. 1.Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations