Approximation Properties and Limits of the Quantum-Classical Molecular Dynamics Model

  • Christof Schütte
  • Folkmar A. Bornemann
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 4)


In molecular dynamics applications there is a growing interest in including quantum effects for simulations of larger molecules. This paper is concerned with mixed quantum-classical models which are currently discussed: the so-called QCMD model with variants and the time-dependent Born-Oppenheimer approximation. All these models are known to approximate the full quantum dynamical evolution—under different assumptions, however. We review the meaning of these assumptions and the scope of the approximation. In particular, we characterize those typical problematic situations where a mixed model might largely deviate from the full quantum evolution. One such situation of specific interest, a nonadiabatic excitation at certain energy level crossings, can promisingly be dealt with by a modification of the QCMD model that we suggest.


Approximation Property Adiabatic Limit Full Quantum Semiclassical Approach Momentum Uncertainty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, V. L: Mathematical Methods of Classical Mechanics. 2nd edition. Springer Verlag, Berlin, Heidelberg, New York, Tokyo (1989)Google Scholar
  2. 2.
    P. Bala, P. Grochowski, B. Lesyng, and J. A. McCammon: Quantum-classical molecular dynamics. Models and applications. In: Quantum Mechanical Simulation Methods for Studying Biological Systems (M. Fields, ed.). Les Houches, France (1995)Google Scholar
  3. 3.
    Billing, G. D.: Quantum-Classical Methods. In: Numerical Grid Methods and Their Application to Schrödinger’s equation (C. Cerjan, eds.). Kluwer Academics Publishers (1993)Google Scholar
  4. 4.
    Born, M., Fock, V.: Beweis des Adiabatensatzes. Z. Phys. 51 (1928) 165–180zbMATHCrossRefGoogle Scholar
  5. 5.
    Bornemann, F. A.: Homogenization in Time of Singularly Perturbed Conservative Mechanical Systems. Manuscript (1997) 146ppGoogle Scholar
  6. 6.
    Bornemann, F. A., Nettesheim, P., Schütte, Ch.: Quantum-Classical Molecular Dynamics as an Approximation to Pull Quantum Dynamics. J. Chem. Phys., 105 (1996) 1074–1083CrossRefGoogle Scholar
  7. 7.
    Bornemann, F. A., Schütte, Ch.: On the Singular Limit of the Quantum-Classical Molecular Dynamics Model. Preprint SC 97–07 (1997) Konrad-Zuse-Zentrum Berlin. SIAM J. Appl. Math., (submitted)Google Scholar
  8. 8.
    Combes, J. M.: The Born-Oppenheimer approximation. Acta Phys. Austriaca 17 (1977) Suppl. 139–159Google Scholar
  9. 9.
    Garcia-Vela, A., Gerber, R. B.: Hybrid quantum-semiclassical wave packet method for molecular dynamics: Application to photolysis of Ar… HCL J. Chem. Phys. 98 (1993) 427–43CrossRefGoogle Scholar
  10. 10.
    Gerber, R. B., Buch, V., Ratner, M. A.: Time-dependent self-consistent field approximation for intramolecular energy transfer. J. Chem. Phys. 66 (1982) 3022–3030CrossRefGoogle Scholar
  11. 11.
    Gerber, R. B., Ratner, M. A.: Self-consistent field methods for vibrational excitations in polyatomic systems. Adv. Chem. Phys. 70 (1988) 97–132CrossRefGoogle Scholar
  12. 12.
    Goldstein, EL: Classical Mechanics. 2nd edition. Addison-Wesley, Reading, MA, (1980)zbMATHGoogle Scholar
  13. 13.
    Hagedorn, G. A.: A time dependent Born-Oppenheimer approximation. Comm. Math. Phys. 77 (1980) 1–19MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hagedorn, G. A.: Electron energy level crossing in the time-dependent Born-Oppenheimer approximation. Theor. Chim. Acta 67 (1990) 163–190CrossRefGoogle Scholar
  15. 15.
    Hagedorn, G. A.: Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps. Commun. Math. Phys. 136 (1991) 433–449MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hagedorn, G. A.: Molecular propagation through electron energy level crossings. Mem. Amer. Math. Soc. 536 (1994) 130ppMathSciNetGoogle Scholar
  17. 17.
    Haug, K., Metiu, H.: A test of the possibility of calculating absorption spectra by mixed quantum-classical methods. J. Chem. Phys. 97 (1992) 4781–4791CrossRefGoogle Scholar
  18. 18.
    Maslov, V.P.: The Complex WKB Method for Nonlinear Equations I. Birkhäuser Basel, Boston, Berlin (1994)zbMATHCrossRefGoogle Scholar
  19. 19.
    Maslov, V. P., Fedoriuk, M. V.: Semi-Classical Approximation in Quantum Mechanics. D. Reidel Publishing Company, Dordrecht, Boston, London (1981)zbMATHCrossRefGoogle Scholar
  20. 20.
    Messiah, A.: Quantum Mechanics, Vol. II. 2nd edition. Wiley, New York (1967)Google Scholar
  21. 21.
    Takens, F.: Motion under the influence of a strong constraining force. In: Global Theory of Dynamical Systems, Evanston 1979 (Z. Nitecki and C. Robinson, eds.). Springer-Verlag, Berlin, Heidelberg, New York (1980)Google Scholar
  22. 22.
    Tully, J. C: Nonadiabatic Processes in Molecular Collisions. In: Dynamics of Molecular Collisions, Part B (W.H. Miller, ed.). Plenum, New York (1976)Google Scholar
  23. 23.
    Zener, C: Non-adiabatic crossing of energy levels, Proc. R. Soc. London, Ser. A 137 (1932) 696–702CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Christof Schütte
    • 1
    • 2
  • Folkmar A. Bornemann
    • 1
  1. 1.Konrad-Zuse-ZentrumBerlinGermany
  2. 2.Fachbereich MathematikFreie Universität BerlinBerlinGermany

Personalised recommendations