Skip to main content

Approximation Properties and Limits of the Quantum-Classical Molecular Dynamics Model

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 4))

Abstract

In molecular dynamics applications there is a growing interest in including quantum effects for simulations of larger molecules. This paper is concerned with mixed quantum-classical models which are currently discussed: the so-called QCMD model with variants and the time-dependent Born-Oppenheimer approximation. All these models are known to approximate the full quantum dynamical evolution—under different assumptions, however. We review the meaning of these assumptions and the scope of the approximation. In particular, we characterize those typical problematic situations where a mixed model might largely deviate from the full quantum evolution. One such situation of specific interest, a nonadiabatic excitation at certain energy level crossings, can promisingly be dealt with by a modification of the QCMD model that we suggest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V. L: Mathematical Methods of Classical Mechanics. 2nd edition. Springer Verlag, Berlin, Heidelberg, New York, Tokyo (1989)

    Google Scholar 

  2. P. Bala, P. Grochowski, B. Lesyng, and J. A. McCammon: Quantum-classical molecular dynamics. Models and applications. In: Quantum Mechanical Simulation Methods for Studying Biological Systems (M. Fields, ed.). Les Houches, France (1995)

    Google Scholar 

  3. Billing, G. D.: Quantum-Classical Methods. In: Numerical Grid Methods and Their Application to Schrödinger’s equation (C. Cerjan, eds.). Kluwer Academics Publishers (1993)

    Google Scholar 

  4. Born, M., Fock, V.: Beweis des Adiabatensatzes. Z. Phys. 51 (1928) 165–180

    Article  MATH  Google Scholar 

  5. Bornemann, F. A.: Homogenization in Time of Singularly Perturbed Conservative Mechanical Systems. Manuscript (1997) 146pp

    Google Scholar 

  6. Bornemann, F. A., Nettesheim, P., Schütte, Ch.: Quantum-Classical Molecular Dynamics as an Approximation to Pull Quantum Dynamics. J. Chem. Phys., 105 (1996) 1074–1083

    Article  Google Scholar 

  7. Bornemann, F. A., Schütte, Ch.: On the Singular Limit of the Quantum-Classical Molecular Dynamics Model. Preprint SC 97–07 (1997) Konrad-Zuse-Zentrum Berlin. SIAM J. Appl. Math., (submitted)

    Google Scholar 

  8. Combes, J. M.: The Born-Oppenheimer approximation. Acta Phys. Austriaca 17 (1977) Suppl. 139–159

    Google Scholar 

  9. Garcia-Vela, A., Gerber, R. B.: Hybrid quantum-semiclassical wave packet method for molecular dynamics: Application to photolysis of Ar… HCL J. Chem. Phys. 98 (1993) 427–43

    Article  Google Scholar 

  10. Gerber, R. B., Buch, V., Ratner, M. A.: Time-dependent self-consistent field approximation for intramolecular energy transfer. J. Chem. Phys. 66 (1982) 3022–3030

    Article  Google Scholar 

  11. Gerber, R. B., Ratner, M. A.: Self-consistent field methods for vibrational excitations in polyatomic systems. Adv. Chem. Phys. 70 (1988) 97–132

    Article  Google Scholar 

  12. Goldstein, EL: Classical Mechanics. 2nd edition. Addison-Wesley, Reading, MA, (1980)

    MATH  Google Scholar 

  13. Hagedorn, G. A.: A time dependent Born-Oppenheimer approximation. Comm. Math. Phys. 77 (1980) 1–19

    Article  MathSciNet  MATH  Google Scholar 

  14. Hagedorn, G. A.: Electron energy level crossing in the time-dependent Born-Oppenheimer approximation. Theor. Chim. Acta 67 (1990) 163–190

    Article  Google Scholar 

  15. Hagedorn, G. A.: Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps. Commun. Math. Phys. 136 (1991) 433–449

    Article  MathSciNet  MATH  Google Scholar 

  16. Hagedorn, G. A.: Molecular propagation through electron energy level crossings. Mem. Amer. Math. Soc. 536 (1994) 130pp

    MathSciNet  Google Scholar 

  17. Haug, K., Metiu, H.: A test of the possibility of calculating absorption spectra by mixed quantum-classical methods. J. Chem. Phys. 97 (1992) 4781–4791

    Article  Google Scholar 

  18. Maslov, V.P.: The Complex WKB Method for Nonlinear Equations I. Birkhäuser Basel, Boston, Berlin (1994)

    Book  MATH  Google Scholar 

  19. Maslov, V. P., Fedoriuk, M. V.: Semi-Classical Approximation in Quantum Mechanics. D. Reidel Publishing Company, Dordrecht, Boston, London (1981)

    Book  MATH  Google Scholar 

  20. Messiah, A.: Quantum Mechanics, Vol. II. 2nd edition. Wiley, New York (1967)

    Google Scholar 

  21. Takens, F.: Motion under the influence of a strong constraining force. In: Global Theory of Dynamical Systems, Evanston 1979 (Z. Nitecki and C. Robinson, eds.). Springer-Verlag, Berlin, Heidelberg, New York (1980)

    Google Scholar 

  22. Tully, J. C: Nonadiabatic Processes in Molecular Collisions. In: Dynamics of Molecular Collisions, Part B (W.H. Miller, ed.). Plenum, New York (1976)

    Google Scholar 

  23. Zener, C: Non-adiabatic crossing of energy levels, Proc. R. Soc. London, Ser. A 137 (1932) 696–702

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schütte, C., Bornemann, F.A. (1999). Approximation Properties and Limits of the Quantum-Classical Molecular Dynamics Model. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics