Advertisement

New Methods in Quantum Molecular Dynamics of Large Polyatomic Systems

  • Pavel Jungwirth
  • R. Benny Gerber
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 4)

Abstract

We present new methods for time-dependent quantum mechanical simulations of large polyatomic systems and their applications to photochemical processes in clusters. Two related approaches are discussed: The Classical Separable Potential (CSP) approach, and its extension towards Configuration Interaction (CICSP). The former scheme assumes separability of the vibrational modes of the system, and describes each mode as moving in a mean field due to the other modes. The basic idea, which allows for quantum simulations of hitherto unaccesibly large systems, is that the effective single-mode potentials are obtained from a classical MD simulation that precedes the quantum calculation. The second approach represents an improvement that corrects for correlations between different modes, resulting in a scheme of good accuracy. Applications of the methods are presented for dynamics following photodetachment in a small I−(Ar) 2 cluster (where comparison with numerically exact calculation is possible) and for photoexcitation dynamics and spectroscopy of atomic and molecular impurities in large clusters, such as I 2(Ar) 17 and I 2(Ar) 47 Future directions of method development are suggested in the light of the algorithmic aspects and the applications.

Keywords

Configuration Interaction Classical Trajectory Classical Molecular Dynamics Quantum Molecular Dynamics Classical Molecular Dynamics Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.C. Schatz, J. Phys. Chem. 100, 12839 (1996).Google Scholar
  2. 2.
    R. Kosloff, Ann. Rev. Phys. Chem. 45, 145 (1994).Google Scholar
  3. 3.
    J.Z.H. Zang and W.H. Miller, J. Chem. Phys. 92, 1811 (1990).Google Scholar
  4. 4.
    U. Manthe, T. Seideman and W.H. Miller, J. Chem. Phys. 92, 10078 (1990).Google Scholar
  5. 5.
    D. Neuhauser, J. Chem. Phys. 9272 (1994).Google Scholar
  6. 6.
    U. Peskin and N. Moiseyev, J. Chem. Phys. 99, 4590 (1993).Google Scholar
  7. 7.
    D.J. Kouri, Y. Houng, W. Zhu and D.K. Hoffman, J. Chem. Phys. 100, 3362 (1994).Google Scholar
  8. 8.
    D.H. Zang and J.Z.K. Zang, J. Chem. Phys. 100, 2679 (1994).Google Scholar
  9. 9.
    R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
  10. 10.
    W.H. Miller, Adv. Chem. Phys. 30, 77 (1975).Google Scholar
  11. 11.
    E.J. Heller, J. Chem. Phys. 94, 2723 (1994).Google Scholar
  12. 12.
    B.W. Spath and W.H. Miller, J. Chem. Phys. 104, 95 (1996).Google Scholar
  13. 13.
    J.G. Kay and W.H. Miller, J. Chem. Phys. 104, 95 (1996).Google Scholar
  14. 14.
    G.C. Schatz and M.A. Ratner, Quantum Mechanics in Chemistry (Prentice Hall, New Jersey, 1993).Google Scholar
  15. 15.
    J.B. Anderson, J. Chem. Phys. 63, 1499 (1975).Google Scholar
  16. 16.
    M.A. Suhm and R.O. Watts, Phys. Rep. 204, 293 (1991).Google Scholar
  17. 17.
    M.A. McMahan, R.N. Barnet and K.B. Whaley, J. Chem. Phys. 99, 8816 (1993).Google Scholar
  18. 18.
    S. Broude and R.B. Gerber, Chem. Phys. Lett. 258, 416 (1996).Google Scholar
  19. 19.
    D. Scharf, G.J. Martyna and M.L. Klein, J. Chem. Phys. 99, 8997 (1993).Google Scholar
  20. 20.
    V. Buch, J. Chem. Phys. 100, 7610 (1994).Google Scholar
  21. 21.
    D. Scharf, G.J. Martyna, D. Li, G.A. Voth and M.L. Klein, J. Chem. Phys. 99, 9013 (1993).Google Scholar
  22. 22.
    J.M. Bowman, Acc. Chem. Res. 19, 202 (1986).Google Scholar
  23. 23.
    R.B. Gerber and M.A. Ratner, Adv. Chem. Phys. 70, 97 (1988).Google Scholar
  24. 24.
    A.E. Roitberg, R.B. Gerber, R. Elber and M.A. Ratner, Science 268, 1319 (1995).Google Scholar
  25. 25.
    N. Makri, Chem. Phys. Lett. 193, 435 (1992).25. N. Makri, Chem. Phys. Lett. 193, 435 (1992).Google Scholar
  26. 26.
    M. Topaler and N. Makri, Chem. Phys. Lett. 210, 285 (1993).Google Scholar
  27. 27.
    J. Cao and G.A. Voth, J. Chem. Phys. 100, 5106 (1994).Google Scholar
  28. 28.
    J. Cao and G.A. Voth, J. Chem. Phys. 101, 6168 (1994).Google Scholar
  29. 29.
    P.A.M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).Google Scholar
  30. 30.
    E.J. Heller, J. Chem. Phys. 64, 63 (1976).Google Scholar
  31. 31.
    R.B. Gerber, V. Buch and M.A. Ratner, J. Chem. Phys. 77, 3022 (1982).Google Scholar
  32. 32.
    Z. Li and R.B. Gerber, J. Chem. Phys. 99, 8637 (1993).Google Scholar
  33. 33.
    E. Predj, R.B. Gerber and M.A. Ratner, J. Chem. Phys. 105, 1121 (1996).Google Scholar
  34. 34.
    N. Makri and W.H. Miller, J. Chem. Phys. 87, 5781 (1987).Google Scholar
  35. 35.
    H.-D. Meyer, U. Manthe and L.S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).Google Scholar
  36. 36.
    U. Manthe, H.-D. Mayer and L.S. Cederbaum, J. Chem. Phys. 97, 3199 (1992).Google Scholar
  37. 37.
    G.A. Worth, H.-D. Mayer and L.S. Cederbaum, J. Chem. Phys. (in press).Google Scholar
  38. 38.
    J.-Y. Fang and H. Guo, J. Chem. Phys. 101, 5831 (1994).Google Scholar
  39. 39.
    J.-Y. Fang and H. Guo, J. Chem. Phys. 102, 2404 (1995).Google Scholar
  40. 40.
    Z. Kotler, E. Neria and A. Nitzan, Cornput. Phys. Commun. 63, 243 (1991).Google Scholar
  41. 41.
    J. Campos-Martinez and R.D. Coalson, J. Chem. Phys. 93, 4740 (1990).Google Scholar
  42. 42.
    A.D. Hammerich, R. Kosloff and M.A. Ranter, Chem. Phys. Lett. 171, 97 (1990).Google Scholar
  43. 43.
    P. Jungwirth and R.B. Gerber, J. Chem. Phys. 102, 6046 (1995).Google Scholar
  44. 44.
    P. Jungwirth and R.B. Gerber, J. Chem. Phys. 102, 8855 (1995).Google Scholar
  45. 45.
    P. Jungwirth and R.B. Gerber, J. Chem. Phys. 104, 5803 (1996).Google Scholar
  46. 46.
    P. Jungwirth, E. Fredj and R.B. Gerber, J. Chem. Phys. 104, 9932 (1996).Google Scholar
  47. 47.
    P. Jungwirth, E. Fredj, P. Zdanska and R.B. Gerber, Computers&Chemistry 21, 419 (1997).Google Scholar
  48. 48.
    P. Jungwirth, E. Fredj and R.B. Gerber, J. Chem. Phys. 107, 8963 (1997).Google Scholar
  49. 49.
    D.J. Thouless, The Quantum Mechanics of Many-Body Systems (Academic Press, New York, 1961) pp. 88–93.zbMATHGoogle Scholar
  50. 50.
    P. Bonche, S.E. Koonin and J.W. Negele, Phys. Rev. C13, 1226 (1976).Google Scholar
  51. 51.
    S. Lent, Phys. Rev. C21, 1594 (1980).Google Scholar
  52. 52.
    J.W. Negele, Physics Today 38, 24 (1985).Google Scholar
  53. 53.
    K. Goeke and P.-G. Reinhard, Time-Dependent Hartree-Fock and Beyond, Lecture Notes in Physics, Vol. 171 (Springer-Verlag, Berlin, 1982).CrossRefGoogle Scholar
  54. 54.
    V. Buch, M.A. Ratner and R.B. Gerber, Chem. Phys. Lett. 101, 44 (1983).Google Scholar
  55. 55.
    R.B. Gerber, R. Kosloff and M. Berman, Comput. Phys. Reports 5, 59 (1986).Google Scholar
  56. 56.
    M.D. Feit, J.A. Fleck and A. Steiger, J. Comp. Phys. 47, 412 (1982).Google Scholar
  57. 57.
    U. Peskin, R. Kosloff and N. Moiseyev, J. Chem. Phys. 99, 4590 (1993).Google Scholar
  58. 58.
    T.R. Horn, R.B. Gerber and M.A. Ratner, J. Chem. Phys. 91, 1813 (1989).Google Scholar
  59. 59.
    T.R. Horn, R.B. Gerber, J.J. Valentini and M.A. Ratner, J. Chem. Phys. 94, 6728 (1991).Google Scholar
  60. 60.
    R.H. Bisseling, R. Kosloff, R.B. Gerber, M.A. Ratner, L. Gibson and C. Cerjan, J. Chem. Phys. 87, 2760 (1987).Google Scholar
  61. 61.
    A. Garcia-Vela, J. Chem. Phys. 104, 1047 (1996).Google Scholar
  62. 62.
    R. Alimi, R.B. Gerber, A.D. Hammerich, R. Kosloff and M.A. Ratner, J. Chem. Phys. 93, 6484 (1990).Google Scholar
  63. 63.
    A. Garcia-Vela and R.B. Gerber, J. Chem. Phys. 103, 3463 (1995).Google Scholar
  64. 64.
    A.B. McCoy, R.B. Gerber and M.A. Ratner, J. Chem. Phys. 101, 1975 (1994).Google Scholar
  65. 65.
    A.B. McCoy, Mol. Phys. 85, 965 (1995).Google Scholar
  66. 66.
    Z. Li and R.B. Gerber, Chem. Phys. Lett. 104, 5803 (1996).Google Scholar
  67. 67.
    J.O. Jung and R.B. Gerber, J. Chem. Phys. (in press).Google Scholar
  68. 68.
    A.Y. Rom and R.B. Gerber, J. Chem. Phys. (submitted).Google Scholar
  69. 69.
    A. Jäckie and H.-D. Meyer, J. Chem. Phys. 104, 7974 (1996).Google Scholar
  70. 70.
    A. Jäckie and H.-D. Meyer, J. Chem. Phys. 102, 5605 (1995).Google Scholar
  71. 71.
    G.D. Billing and G. Jolicard, Chem. Phys. Lett. 221, 75 (1994).Google Scholar
  72. 72.
    J.R. Waldeck, J. Campos-Martinez and R.D. Coalson, J. Chem. Phys. 94, 2773 (1991).Google Scholar
  73. 73.
    N.P. Blake and H. Metiu, in Femtosecond Chemistry, ed. J. Manz and L. Wöste (VCH, Weinheim, 1995) p. 532.Google Scholar
  74. 74.
    J. Kucar, H.-D. Meyer and L.S. Cederbaum, Chem. Phys. Lett. 140, 525 (1987).Google Scholar
  75. 75.
    R.B. Gerber and A. Alimi, Chem. Phys. Lett. 184, 69 (1991).Google Scholar
  76. 76.
    J. Campos-Martinez and R.D. Coalson, J. Chem. Phys. 99, 9629 (1993).Google Scholar
  77. 77.
    E. Predj, R.B. Gerber and M.A. Ratner (to be published).Google Scholar
  78. 78.
    E.J. Heller, J. Chem. Phys. 62, 1544 (1975).Google Scholar
  79. 79.
    M.P. Allen and D. J. Tildesley, Computer Simulation of Liquids, (Clarendon, Oxford, 1987).zbMATHGoogle Scholar
  80. 80.
    R. McWeeny, Methods of Molecular Quantum Mechanics, 2nd edition (Academic Press, San Diego, 1992).Google Scholar
  81. 81.
    A.I. Krylov, R.B. Gerber, M.A. Gaveau, J.M. Mestdagh, B. Schilling and J.P. Visticot, J. Chem. Phys. 104, 3651 (1996).Google Scholar
  82. 82.
    J.F. Grzykowski and L. Andrews, J. Raman Spectros. 4, 99 (1975).Google Scholar
  83. 83.
    P. Jungwirth and B. Schmidt, Chem. Phys. Lett, 275 (1997) 127.Google Scholar
  84. 83.
    R. B. Gerber, P. Jungwirth, E. Predj, and A. Y. Rom Modern methods for multidimensional dynamics computations in chemistry, ed. D. L. Thompson (World Scientific, River Edge, NJ, 1998).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Pavel Jungwirth
    • 1
  • R. Benny Gerber
    • 2
    • 3
  1. 1.J. Heyrovsky Institute of Physical Chemistry Academy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Department of Physical Chemistry and The Fritz Haber Research CenterThe Hebrew UniversityJerusalemIsrael
  3. 3.Department of ChemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations