Advertisement

Exploiting Tsallis Statistics

  • John E. Straub
  • Ioan Andricioaei
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 4)

Abstract

Two incarnations of the canonical ensemble probability distribution based on the generalization of statistical mechanics of Tsallis are described. A generalization of the law of mass action is used to derive equilibrium constants. Reaction rate constants for barrier crossing are derived using the transition state theory approximation. Monte Carlo and Molecular Dynamics algorithms which can be used to sample Tsallis statistical distributions are defined. The results are used to demonstrate that MC and MD algorithms which sample the Tsallis statistical distributions can be expected to enhance the rate of phase space sampling in simulations of many body systems.

Keywords

Phase Space Canonical Ensemble Monte Carlo Algorithm Acceptance Probability Transition State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Tsallis. J. Stat Phys., 52: 479, 1988.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    E.M.F. Curado and C. Tsallis. J. Phys. A: Math. Gen, 24: L69, 1991.MathSciNetCrossRefGoogle Scholar
  3. 3.
    C. Tsallis. Phys. Rev. Lett, 75: 3589, 1995.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    J. Maddox. Nature, 365: 103, 1993.CrossRefGoogle Scholar
  5. 5.
    I. Andricioaei and J. E. Straub. Phys. Rev. E, E 53: R3055, 1996.CrossRefGoogle Scholar
  6. 6.
    I. Andricioaei and J. E. Straub. J. Chem. Phys., 107: 9117, 1997.CrossRefGoogle Scholar
  7. 7.
    B. J. Berne and J. E. Straub. Curr. Opin. Struc. Bio., 7: 181, 1997.CrossRefGoogle Scholar
  8. 8.
    S. Huo and J.E. Straub. J. Chem. Phys., 107: 5000, 1993.CrossRefGoogle Scholar
  9. 9.
    R. Zwanzig. J. Chem. Phys., 103: 9397, 1995.CrossRefGoogle Scholar
  10. 10.
    Such “global” master equations have recently gained attention in the study of protein folding. See for example C. De Dominicis, H. Orland and F. Lainee, J. Phys. Lett, 46: L463, 1985; E.I. Shakhnovich and A. M. Gutin, Eurphys. Lett, 9: 569, 1989; J. G. Saven, J. Wang and P. G. Wolynes, J. Chem. Phys., 101:11037, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • John E. Straub
    • 1
  • Ioan Andricioaei
    • 1
  1. 1.Department of ChemistryBoston UniversityBostonUSA

Personalised recommendations