An Algebraic Multilevel Preconditioner for Symmetric Positive Definite and Indefinite Problems

  • Arnold Reusken
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 15)


We present a preconditioning method for the iterative solution of large sparse systems of equations. The preconditioner is based on ideas both from ILU preconditioning and from multigrid. The resulting preconditioning technique requires the matrix only. A multilevel structure is obtained by constructing a maximal independent set of the graph of a reduced matrix. The computation of a Schur complement approximation is based on a Galerkin approach with a matrix dependent prolongation and restriction. The resulting preconditioner has a transparant modular structure similar to the algorithmic structure of a multigrid V-cycle. The method is applied to symmetric positive definite and indefinite Helmholtz problems. The multilevel preconditioner is compared with standard ILU preconditioning methods.


Helmholtz Equation Multigrid Method Tridiagonal Matrix Decomposition Phase Cyclic Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bank, R.E., Dupont, T.F., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math. 52 (1988) 427–458MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bank, R.E., Smith, R.K.: The incomplete factorization multigraph algorithm. SIAM J. Sci. Comput. 20 (1999) 1349–1364MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bank, R.E., Wagner, C.: Multilevel ILU decomposition. Numer. Math 82 (1999) 543–576MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bastian, P.: Parallele adaptive Mehrgitterverfahren. Teubner Skripten zur Numerik, Teubner, Stuttgart, Leipzig (1996)MATHGoogle Scholar
  5. 5.
    Botta, E.E.F., Van der Ploeg, A.: Preconditioning techniques for matrices with arbitrary sparsity patterns. In: Proceedings of the Ninth International Conference on Finite Elements in Fluids, New Trends and Applications (1995) 989–998Google Scholar
  6. 6.
    Botta, E.E.F., Wubs, W.: MRILU: it’s the preconditioning that counts. Report W-9703, Department of Mathematics, University of Groningen, The Netherlands (1997)Google Scholar
  7. 7.
    Braess, D.: Towards algebraic multigrid for elliptic problems of second order. Computing 55 (1995) 379–393MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bruaset, A.M.: A survey of preconditioned iterative methods. Pitman Research Notes in Mathematics 328 Longman (1995)Google Scholar
  9. 9.
    Dendy, J.E.: Black box multigrid. J. Comput. Phys. 48 (1982) 366–386MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Golub, G.H., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, second edition (1989)Google Scholar
  11. 11.
    Hackbusch, W.: Multigrid methods and applications. Springer, Berlin, Heidelberg, New York (1985)Google Scholar
  12. 12.
    Hackbusch, W.: Iterative solution of large sparse systems of equations. Springer, New York (1994)MATHCrossRefGoogle Scholar
  13. 13.
    Heller, D.: Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems. SIAM J. Numer. Anal. 13 (1976) 484–496MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Horowitz, E., Sahni, S.: Fundamentals of data structures in Pascal. Pitman, London (1984)Google Scholar
  15. 15.
    Notay, Y.: Using approximate inverses in algebraic multilevel preconditioning. Numer. Math. 80 (1998) 397–417MathSciNetMATHGoogle Scholar
  16. 16.
    Van der Ploeg, A.: Preconditioning for sparse matrices with applications. PhD thesis, University of Groningen (1994)Google Scholar
  17. 17.
    Reusken, A.: Approximate cyclic reduction preconditioning. In: Multigrid methods 5 (W. Hackbusch and G. Wittum, eds.). Lecture Notes in Computational Science and Engineering 3 (1998) 243–259Google Scholar
  18. 18.
    Reusken, A.: On the approximate cyclic reduction preconditioner. SIAM J. Sci. Comput., to appearGoogle Scholar
  19. 19.
    Ruge, J.W., Stäben, K.: Algebraic multigrid. In: Multigrid Methods (S.F. McCormick, ed.). SIAM, Philadelphia (1987) 73–130Google Scholar
  20. 20.
    Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing Company, Boston (1996)MATHGoogle Scholar
  21. 21.
    Saad, Y.: ILUM: a multi-elimination ILU preconditioner for general sparse matrices. SIAM J. Sci. Comput. 17 (1996) 830–847MathSciNetMATHGoogle Scholar
  22. 22.
    Saad, Y., Zhang, J.: BILUM: block versions of multi-elimination and multilevel ILU preconditioner for general sparse linear systems. Report UMSI 97/126, Department of Computer Science, University of Minnesota (1997)Google Scholar
  23. 23.
    Stüben, K.: Algebraic multigrid (AMG): An introduction with applications. GMD Report 53 (1999)Google Scholar
  24. 24.
    Swarztrauber, P.N.: The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Review 19 (1977) 490–501MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56 (1996) 179–196MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Wesseling, P.: An introduction to multigrid methods. Wiley, Chichester (1992)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Arnold Reusken
    • 1
  1. 1.Institut für Geometrie und Praktische MathematikRWTH AachenAachenGermany

Personalised recommendations