A Numerical Treatment of Neuberger’s Lattice Dirac Operator

  • Pilar Hernández
  • Karl Jansen
  • Laurent Lellouche
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 15)


We describe in some detail our numerical treatment of Neuberger’s lattice Dirac operator as implemented in a practical application. We discuss the improvements we have found to accelerate the numerical computations and give an estimate of the expense when using this operator in practice.


Chiral Symmetry Zero Mode Numerical Treatment Quantum Chromo Dynamic Lower Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.G. Wilson, Phys. Rev. D10 (1974) 2445.Google Scholar
  2. 2.
    P. Hasenfratz, V. Laliena and F. Niedermayer, Phys.Lett.B427 (1998) 125.Google Scholar
  3. 3.
    M. Löscher, Phys. Lett. B428 (1998) 342.Google Scholar
  4. 4.
    P. Hasenfratz, Nucl. Phys. B525 (1998) 401.CrossRefGoogle Scholar
  5. 5.
    H. Neuberger, Phys. Lett. B417 (1998) 141 and B427 (1998) 353.Google Scholar
  6. 6.
    S. Chandrasekharan, Phys. Rev. D60 (1999) 074503.Google Scholar
  7. 7.
    P. Hasenfratz, Nucl. Phys. B (Proc.Suppl.) 63A-C (1998) 53.CrossRefGoogle Scholar
  8. 8.
    P.H. Ginsparg and K.G. Wilson, Phys. Rev. D25 (1982) 2649.Google Scholar
  9. 9.
    F. Niedermayer, Nucl. Phys. B (Proc.Suppl.) 73 (1999) 105.zbMATHCrossRefGoogle Scholar
  10. 10.
    T. Blum, Nucl.Phys.B (Proc.Suppl.) 73 (1999) 167.zbMATHCrossRefGoogle Scholar
  11. 11.
    P. Hernández, K. Jansen and L. Lellouch, CERN preprints CERN-TH/99–197, hep-lat/9907022 and CERN-TH/99–273, hep-lat/9909026.Google Scholar
  12. 12.
    H. Neuberger, hep-lat/9910040.Google Scholar
  13. 13.
    A. Borici, hep-lat/9910045.Google Scholar
  14. 14.
    P. Hernández, K. Jansen and M. Lüscher, Nucl. Phys. B552 (1999) 363.CrossRefGoogle Scholar
  15. 15.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes, Second Edition, Cambridge University Press, Cambridge, 1992.Google Scholar
  16. 16.
    Y. Saad, Iterative methods for sparse linear systems, PWS Publishing Company, Boston, 1996.zbMATHGoogle Scholar
  17. 17.
    L. Fox and I. B. Parker, Chebyshev polynomials in numerical analysis,Oxford University Press, London, 1968.Google Scholar
  18. 18.
    R.G. Edwards, U.M. Heller and R. Narayanan, Phys. Rev. D59 (1999) 094510.Google Scholar
  19. 19.
    B. Bunk, K. Jansen, M. Löscher and H. Simma, DESY report (September 1994); T. Kalkreuter and H. Simma, Comp.Phys.Comm. 93 (1996) 33.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Pilar Hernández
    • 1
  • Karl Jansen
    • 2
  • Laurent Lellouche
    • 2
  1. 1.CERNSwitzerland
  2. 2.LAPTHAnnecy-le-Vieux CedexFrance

Personalised recommendations