Skip to main content

Targets for Myeloperoxidase-Dependent Bactericidal Activity

  • Conference paper
The Peroxidase Multigene Family of Enzymes
  • 100 Accesses

Abstract

Myeloperoxidase (MPO) is an abundant constituent (up to 5% of dry weight) of polymorphonuclear leukocytes [1]. In conjunction with phagocyte-generated hydrogen peroxide and any of several cofactors, the enzyme catalyzes the formation of a broad array of microbicidal products. The number of potentially microbicidal products exceeds the several effective cofactors implicated, including the halides chloride, bromide, iodide, the pseudohalide thiocyanate, and nitrite [1, 2]. The in vivo relevance of the cofactors based on their anticipated physiologic concentrations is open to debate. Chloride, however, is clearly available at the greater than to mM concentrations required for it to be an effective MPO cofactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klebanoff SJ, Clark RA (1978) The Neutrophil. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  2. Klebanoff SJ. (1993) Reactive nitrogen intermediates and antimicrobial activity: role of nitrite. Free Radic Biol Med 14: 351–360

    Article  PubMed  CAS  Google Scholar 

  3. Harrison JE, Schultz J (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251: 1371–1374

    PubMed  CAS  Google Scholar 

  4. Thomas EL (1979) Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli. Infect Immun 23: 522–531

    PubMed  CAS  Google Scholar 

  5. Thomas EL (1979) Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: effect of exogenous amines on antibacterial action against Escherichia coli. Infect Immun 25: 110–116

    PubMed  CAS  Google Scholar 

  6. Selvaraj RJ, Paul BB, Strauss RR, Sbarra AJ (1974) Oxidative peptide cleavage and decarboxylation by the myeloperoxidase-hydrogen peroxide-chloride ion antimicrobial system. Infect Immun 9: 255–260

    PubMed  CAS  Google Scholar 

  7. Paul BB, Jacobs AA, Strauss RR, Sbarra AJ (1970) Role of the phagocyte in host-parasite interactions. XXIV. Aldehyde generation by the myeloperoxidase-H202-chloride system: a possible in vivo mechanism of action. Infect Immun 2: 414–418

    PubMed  CAS  Google Scholar 

  8. Selvaraj RJ, Zgliczynski JM, Paul BB, Sbarra AJ (1978) Enhanced killing of myeloperoxidase-coated bacteria in the myeloperoxidase-H2O2-Cl-system. J Infect Dis 137: 481–485

    Article  PubMed  CAS  Google Scholar 

  9. Albrich JM, McCarthy CA, Hurst JK (1981) Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci U S A 78: 210–214

    Article  PubMed  CAS  Google Scholar 

  10. Firshein W (1989) Role of the DNA/membrane complex in prokaryotic DNA replication. Annu Rev Microbiol 43: 89–120

    Article  PubMed  CAS  Google Scholar 

  11. Ogden GB, Pratt MJ, Schaechter M (1988) The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated. Cell 54: 127–135

    Article  PubMed  CAS  Google Scholar 

  12. Lu M, Campbell JL, Boye E, Kleckner N (1994) SeqA, a negative modulator of replication initiation in E. coli. Cell 77: 413–426

    CAS  Google Scholar 

  13. Rosen H, Orman J, Rakita RM, Michel BR, VanDevanter DR (1990) Loss of DNA-membrane interactions and cessation of DNA synthesis in myeloperoxidase-treated Escherichia coli. Proc Natl Acad Sci U S A 87: 10048–10052

    Article  PubMed  CAS  Google Scholar 

  14. Elsbach P, Weiss J (1983) A reevaluation of the roles of the O2-dependent and O2-independent microbicidal systems of phagocytes. Rev Infect Dis 5: 843–853

    Article  PubMed  CAS  Google Scholar 

  15. Rosen H, Michel BR (1997) Neutrophil-mediated killing of Escherichia coli: redundant contribution of myeloperoxidase-mediated systems. Infect Immun 65: 4173–4178

    PubMed  CAS  Google Scholar 

  16. Rosen H, Michel BR, VanDevanter DR, Hughes JP (1998) Differential effects of myeloperoxidasederived oxidants on Escherichia coli DNA replication. Infect Immun 66: 2655–2659

    PubMed  CAS  Google Scholar 

  17. Abeles A, Brendler T, Austin S (1993) Evidence of two levels of control of P1 oriR and host oriC replication origins by DNA adenine methylation. J Bacteriol 175: 7801–7807

    PubMed  CAS  Google Scholar 

  18. Brendler T, Abeles A, Austin S (1991) Critical sequences in the core of the P1 plasmid replication origin. J Bacteriol 173: 3935–3942

    PubMed  CAS  Google Scholar 

  19. Brendler T, Abeles A, Austin S (1995) A protein that binds to the Pi origin core and the oriC 13mer region in a methylation-specific fashion is the product of the host seqA gene. EMBO J 14: 4083–4089

    PubMed  CAS  Google Scholar 

  20. Winterbourn CC, Berg JJM van den, Roitman E, Kuypers FA (1992) Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid. Arch Biochem Biophys 296: 547–555

    Article  PubMed  CAS  Google Scholar 

  21. Kornberg A, Baker TA (1992) DNA replication. W.H. Freeman and Company, New York

    Google Scholar 

  22. Slater S, Wold S, Lu M, Boye E, Skarstad K, Kleckner N (1995) E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 82: 927–936

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosen, H. (2000). Targets for Myeloperoxidase-Dependent Bactericidal Activity. In: Petrides, P.E., Nauseef, W.M. (eds) The Peroxidase Multigene Family of Enzymes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58314-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58314-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63535-9

  • Online ISBN: 978-3-642-58314-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics