Skip to main content

Prevalence of Inherited Myeloperoxidase Deficiency in Japan

  • Conference paper
The Peroxidase Multigene Family of Enzymes
  • 96 Accesses

Abstract

Neutrophils possess potently active biological systems able to kill in vitro tumors as well as a wide range of microorganisms, including bacteria, fungi [1-3], and viruses [4-6]. To this end, neutrophils utilize directly microbicidal granule proteins as well as a variety of reactive oxygen intermediates. However, the most efficient oxygen-dependent system exploits the combined effects of hydrogen peroxide, generated by activation of the NADPH-dependent oxidase, and the granule protein myeloperoxidase (MPO; E.C. 1.11.1.7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klebanoff SJ (1990) Myeloperoxidase - occurrence and biological function. In: Everse J, Grisham M (eds) Peroxidase in chemistry and biology. CRC Press, Boca Raton, 180–192

    Google Scholar 

  2. Klebanoff SJ (1980) Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med 93:480–489

    PubMed  CAS  Google Scholar 

  3. Clark RA, Klebanoff SJ, Einstein AB, Fefe A (1975) Peroxidase H202-halide system: cytotoxic effect on mammalian tumor cells. Blood 45:161

    PubMed  CAS  Google Scholar 

  4. Yamamoto K, Suzuki K, Suzuki K, Mizuno S (1989) Phagocytosis and ingestion of influenza virus by human polymorphonuclear leukocytes in vitro: electron microscopy studies. J Med Microbiol 28: 191–198

    Article  PubMed  CAS  Google Scholar 

  5. Yamamoto K, Miyoshi-Koshio T, Utuki Y, Mizuno S, Suzuki K (1991) Virucidal activity and viral protein modification by myeloperoxidase: a candidate for defense factor of human polymorphonuclear leukocytes against influenza infection. J Infect Dis 164: 8–14

    Article  PubMed  CAS  Google Scholar 

  6. Klebanoff SJ, Coobes RW (1992) Viricidal effect of polymorphonuclear leukocytes on human immunodeficiency virus-1: role of the myeloperoxidase system. J Clin Invest 89: 2014–2017

    Article  PubMed  CAS  Google Scholar 

  7. Kutter D, Haidari AI, Thoma J (1994) Myeloperoxidase deficiency: simple methods for its diagnosis and significance of different forms. Klin Lab 40: 342–346

    Google Scholar 

  8. Ornstein L, Ansley H, Saunders A (1976) Improving manual differential white cell counts with cytochemistry. Blood Cells z: 557–585

    Google Scholar 

  9. Patriarca P, Cramer R, Tedesco F, Kakinuma K (1975) Studies on the mechanism of metabolic stimulation in polymorphonuclear leukocytes during phagocytosis. II. Presence of the NADPH oxidizing activity in a myeloperoxidase-deficient subject. Biochim Biophys Acta 385: 387–393

    Article  PubMed  CAS  Google Scholar 

  10. Nauseef WM, Root RK, Malech HL (1983) Biochemical and immunologic analysis of hereditary myeloperoxidase deficiency. J Clin Invest 71:1297–1307

    Article  PubMed  CAS  Google Scholar 

  11. Inazawa J, Inoue K, Nishigaki H, Tsuda S, Taniwaki M, Misawa S, Abe T (1989) Assignment of the human myeloperoxidase gene (MPO) to bands q21.3-q23 of chromosome 17. Cytogenet Cell Genet 50: 135–136

    Article  PubMed  CAS  Google Scholar 

  12. Nauseef WM (1986) Myeloperoxidase biosynthesis by a human promyelocytic leukemia cell line: insight into myeloperoxidase deficiency. Blood 67: 865–872

    PubMed  CAS  Google Scholar 

  13. Tobler A, Selsted ME, Miller CW, Johnson K.R, Novotny MI, Rovera G, Koeffler HP (1989) Evidence for a pretranslational defect in hereditary and acquired myeloperoxidase deficiency. Blood 73:1980–1986

    PubMed  CAS  Google Scholar 

  14. Andrew PC, Krinsky NI (1981) The reductive cleavage of myeloperoxidase in half, producing enzymatically active hemi-myeloperoxidase. J Biol Chem 256: 4211–4218

    Google Scholar 

  15. Anderson MR, Atkin CL, Eye HJ (1982) Intact form of myeloperoxidase from normal human neutrophils. Arch Biochem Biophys 214: 273–283

    Article  Google Scholar 

  16. Olsen RL, Little C (1984) Studies on the subunits of human myeloperoxidase. Biochem J 220: 701–709

    Google Scholar 

  17. Chang KS, Trujillo JM, Cook RG, Stass SA (1986) Human myeloperoxidase gene: molecular cloning and expression in leukemia cells. Blood 68: 1411–1414

    PubMed  CAS  Google Scholar 

  18. Suzuki K, Yamaha M, Abash K, Fujikura T (1986) Similarity of kinetics in three types of myeloperoxidase of human leukocytes and four types of HL-6o cells. Arch Biochem Biophys 245: 167–173

    Article  PubMed  CAS  Google Scholar 

  19. Homma T, Suzuki K, Kudo Y, Inagawa M, Mizuno S, Yamaguchi K, Tagawa M (1989) Preparation and characterization of monoclonal antibodies against human myeloperoxidase. Arch Biochem Biophys 273: 189–196

    Article  PubMed  CAS  Google Scholar 

  20. Nauseef WM, Cogley M, McCormick S (1996) Effect of the R569W missense mutation on the biosynthesis of myeloperoxidase. J Biol Chem 271: 9546–9549

    Article  PubMed  CAS  Google Scholar 

  21. Nauseef WM, Brigham S, Cogley M (1994) Hereditary myeloperoxidase deficiency due to a missense mutation of arginine 569 to tryptophan. J Biol Chem 269:1212–1216

    PubMed  CAS  Google Scholar 

  22. Nauseef WM, Cogley M, Bock S, Petrides PE (1998) Pattern of inheritance in hereditary myeloperoxidase deficiency associated with R569W missense mutation. J Leukoc Biol 63: 264–269

    PubMed  CAS  Google Scholar 

  23. DeLeo FR, Goedken M, McCormick SJ, Nauseef WM (1998) A novel form of hereditary myeloperoxidase deficiency linked to endoplasmic reticulum/proteasome degradation. J Clin Invest 101: 2900–2909

    Article  Google Scholar 

  24. Romano M, Dri P, Dadal L, Patriarca P (1997) Biochemical and molecular characterization ofhereditary myeloperoxidase deficiency. Blood 90: 4126–4134

    PubMed  CAS  Google Scholar 

  25. Lanza F (1998) Clinical manifestations of myeloperoxidase deficiency. J Mol Med 76: 676–681

    Article  PubMed  CAS  Google Scholar 

  26. Aratani Y, Koyama H, Nyui S-I, Suzuki K, Kura F, Maeda N (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun 67:1828–1836

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suzuki, K., Nunoi, H., Miyazaki, M., Koi, F. (2000). Prevalence of Inherited Myeloperoxidase Deficiency in Japan. In: Petrides, P.E., Nauseef, W.M. (eds) The Peroxidase Multigene Family of Enzymes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58314-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58314-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63535-9

  • Online ISBN: 978-3-642-58314-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics