Advertisement

Fixed and Adaptive Cache Aware Algorithms for Multigrid Methods

  • Craig C. Douglas
  • Jonathan Hu
  • Wolfgang Karl
  • Markus Kowarschik
  • Ulrich Rüde
  • Christian Weiß
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 14)

Abstract

Many current computer designs, including the node architecture of most parallel supercomputers, employ caches and a hierarchical memory structure. Hence, the speed of a multigrid code depends increasingly on how well the cache structure is exploited. Typical multigrid applications are running on data sets much too large to fit into any cache. Thus, applications should reuse copies of the data that is once brought into the cache as often as possible. In this paper, suitable fixed and adaptive blocking strategies for both structured and unstructured grids are introduced.

Keywords

Multigrid Method Unstructured Grid Cache Size Memory Hierarchy Black Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Continuous profiling: Where have all the cycles gone? In Proceedings of the 16th ACM Symposium on Operating System Principles, pages 1–14, St. Malo, France, Oct. 1997.CrossRefGoogle Scholar
  2. 2.
    C. C. Douglas. Caching in with multigrid algorithms: problems in two dimensions. Parai. Alg. Appl., 9: 195–204, 1996.zbMATHGoogle Scholar
  3. 3.
    C. C. Douglas. Reusable cache memory object oriented multigrid algorithms. Preprint, 1999.Google Scholar
  4. 4.
    C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß. Cache optimization for structured and unstructured grid multigrid. Electron. Trans. Numer. Anal., 9, 2000.Google Scholar
  5. 5.
    G. Karypis. METIS serial graph partitioning and matrix ordering software. In URL http://www-users.cs.umnedu/~karypis/metis/metis/main.shtml.
  6. 6.
    C. Weiß, W. Karl, M. Kowarschik, and U. Rüde. Memory characteristics of iterative methods. In Proceedings of the Supercomputing Conference, Portland, Oregon, Nov. 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Craig C. Douglas
    • 1
  • Jonathan Hu
    • 1
  • Wolfgang Karl
    • 2
  • Markus Kowarschik
    • 3
  • Ulrich Rüde
    • 3
  • Christian Weiß
    • 2
  1. 1.Department of MathematicsUniversity of KentuckyLexingtonUSA
  2. 2.Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR-TUM)Technische UniversitätMünchenGermany
  3. 3.Lehrstuhl für Systemsimulation (IMMD X)Universität Erlangen-NürnbergGermany

Personalised recommendations