Skip to main content

A Fast Algorithm for MDL-Based Multi-Band Image Segmentation

  • Chapter
Image Technology

Abstract

We consider the problem of image segmentation and describe an algorithm that is based on the Minimum Description Length (MDL) principle, is fast, is applicable to multiband images, and guarantees closed regions. We construct an objective function that, when minimized, yields a partitioning of the image into regions where the pixel values in each band of each region are described by a polynomial surface plus noise. The polynomial orders and their coefficients are determined by the algorithm. The minimization is difficult because (1) it involves a search over a very large space and (2) there is extensive computation required at each stage of the search. To address the first of these problems we use a region-merging minimization algorithm. To address the second we use an incremental polynomial regression that uses computations from the previous stage to compute results in the current stage, resulting in a significant speed up over the non-incremental technique. The segmentation result obtained is suboptimal in general but of high quality. Results on real images are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Abramson. Information Theory and Coding. McGraw-Hill, 1963.

    Google Scholar 

  2. H. Akaike. A new look at statistical model identification. IEEE Trans., AC-19:716–723, 1974.

    MathSciNet  Google Scholar 

  3. T.W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley, New York, second edition, 1984.

    MATH  Google Scholar 

  4. James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York, second edition, 1985.

    MATH  Google Scholar 

  5. J.M. Beaulieu and M. Goldberg. Hierarchy in picture segmentation: A stepwise optimization approach. IEEE PAMI, 11(2):150–163, February 1989.

    Article  Google Scholar 

  6. P.J. Besl and R.C. Jain. Segmentation through variable-order surface fitting. IEEE Trans PAMI, 10(2):167–192, March 1988.

    Article  Google Scholar 

  7. A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, MA, 1987.

    Google Scholar 

  8. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, New York, 1991.

    Book  MATH  Google Scholar 

  9. Trevor Darrell and Alex Pentland. Recovery of minimal descriptions using parallel robust estimation. Technical Report 163, 1991.

    Google Scholar 

  10. Byron Dom and David Steele. 2n — tree classifiers and realtime image segmentation. In MVA ′90: IAPR Workshop on Machine Vision Applications, Tokyo, Japan, 1990. IAPR (for expanded version see IBM Research Report 7558 (70424) 7/2/90).

    Google Scholar 

  11. Trevor Darrel, Stan Sclaroff, and Alex Pentland. Segmentation by minimal description. In ICCV 90, Osaka, Japan, pp. 112-116, 1990.

    Google Scholar 

  12. P. Fua and A.J. Hanson. Extracting generic shapes using model driven optimization. In Proceedings of the Image Understanding Workshop, pp. 994-1004, Boston, 1988.

    Google Scholar 

  13. I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products. Academic Press, New York, corrected and enlarged edition, 1980.

    MATH  Google Scholar 

  14. G.H. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, MD, 1983.

    MATH  Google Scholar 

  15. R.M. Haralick and L. Shapiro. Image segmentation techniques. Computer Vision, Graphics, and Image Processing, 29:100–132, 1985.

    Article  Google Scholar 

  16. R.M. Haralick and L.G. Shapiro. Computer and Robot Vision, volume 1. Addison-Wesley, 1992.

    Google Scholar 

  17. Edwin T. Jaynes. Prior probabilities. In R.D. Rosenkrantz, editor, E.T. Jaynes: Papers on Probability, Statistics and Statistical Physics, chapter 7. D. Reidel, Boston, 1983 (original paper published in 1968).

    Google Scholar 

  18. T. Kanungo, B. Dom, W. Niblack, and D. Steele. A fast algorithm for MDL-based multi-band image segmentation. In International Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 1994 (to appear).

    Google Scholar 

  19. K. Keeler. Minimal length encoding of planar subdivision topologies with application to image segmentation. In AAAI 1990 Spring Symposium of the Theory and Application of Minimal Length Encoding, 1990.

    Google Scholar 

  20. Daniel Keren, Ruth Marcus, Michael Werman, and Shmuel Peleg. Segmentation by minimum length encoding. In ICPR 90, pp. 681-683, 1990.

    Google Scholar 

  21. S. Liou, A.H. Chin, and R. Jain. A parallel technique for signal-level perceptual organization. IEEE Trans PAMI, 13(4):317–325, 1991.

    Article  Google Scholar 

  22. Y.G. Leclerc. Constructing simple stable descriptions for image partitioning. International Journal of Computer Vision, 3:73–102, 1989.

    Article  Google Scholar 

  23. Y.G. Leclerc. The Local Structure of Image Intensity Discontinuities. PhD thesis, McGill University, Montréal, Québec, Canada, May 1989.

    Google Scholar 

  24. Y.G. Leclerc. Region grouping using the minimum-description-length principle. In DARPA Image Understanding Workshop, 1990.

    Google Scholar 

  25. C.L. Liu. Elements of Discrete Mathematics. McGraw Hill, New York, 1977.

    MATH  Google Scholar 

  26. S. Liou and R. Jain. An approach to three-dimensional image segmentation. CVGIP: Image Understanding, 53(3):237–252, 1991.

    Article  MATH  Google Scholar 

  27. Ragnar Nohre. Topics in Descriptive Complexity. PhD thesis, Technical University of Linkoping, 1993. See Chap. 2 Coding Small Data Sets.

    Google Scholar 

  28. Alex Pentland. Part segmentation for objects recognition. Neural Computation, 1:82–91, 1989.

    Article  Google Scholar 

  29. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C (2 ed.). Cambridge University Press, 1992.

    Google Scholar 

  30. J. Rissanen. Modelling by shortest data description. Automatica, 14:465–471, 1978.

    Article  MATH  Google Scholar 

  31. J. Rissanen. A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 2(11):211–222, 1983.

    MathSciNet  Google Scholar 

  32. J. Rissanen. Stochastic Complexity in Statistical Inquiry, volume 15. World Scientific Series in Computer Science, 1989.

    Google Scholar 

  33. Jorma Rissanen. Fisher information and stochastic complexity. Research Report RJ 9547, IBM Research Division, 1993.

    Google Scholar 

  34. J. Sheinvald, B. Dom, W. Niblack, and D. Steele. Unsupervised image segmentation using the minimum description length principle. In Proceedings of ICPR 92, August 1992. For an expanded version see: IBM Research Report RJ 8474 (76695), (11/1/91).

    Google Scholar 

  35. R. Sedgewick. Algorithms in C. Addison Wesley, 1990.

    Google Scholar 

  36. C.E. Shannon. A mathematical theory of communication. Bell Syst Tech J., (3):379–423, 1948.

    MathSciNet  Google Scholar 

  37. G. Strang. Linear Algebra and its Applications. Academic Press, New York, NY, 1980.

    Google Scholar 

  38. R.S. Wallace and T. Kanade. Finding natural clusters having minimum description length. In AAAI 1990 Spring Symposium on the Theory and Application of Minimum Length Methods, Stanford University, Stanford, CA, 1990.

    Google Scholar 

  39. J. Zhang and J.W. Modestino. A model fitting approach to cluster validation with application to stochastic model-based image segmentation. IEEE PAMI, 12(10):1009–1017, October 1990.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kanungo, T., Dom, B., Niblack, W., Steele, D. (1996). A Fast Algorithm for MDL-Based Multi-Band Image Segmentation. In: Sanz, J.L.C. (eds) Image Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58288-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58288-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63528-1

  • Online ISBN: 978-3-642-58288-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics