Splines and Spline Fitting Revisited

  • D. C. Vargas
  • E. J. Rodríguez
  • M. Flickner
  • J. L. C. Sanz

Abstract

This paper presents a detailed summary of the properties and basic facts about spline spaces and their B-spline bases. Examination is made of the many different joint-continuity conditions. Geometric continuity constraints are of special interest, as they appear to satisfy visual needs of the human observers. Least-squares approximation of analytic curves and discrete point sets is also discussed. Special attention is devoted to the problem of selecting the bast fit to a closed curve, considering all the possible shifted parametric descriptions of the curve.

Keywords

Rubber Hull Convolution Sine Cose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Barnhill and R. Riesenfeld, editors. Computer Aided Geometric Design. Academic Press, 1974.Google Scholar
  2. [2]
    P. Barry and R. Goldman. What is the natural generalization of a Bézier curve? In T. Lyche and L. Shumaker, editors, Curves and Surfaces for Computer Aided Geometric Design, pages 71-85, San Diego, CA, 1989. Academic Press, Inc.Google Scholar
  3. [3]
    R. Bartels, J. Beatty, and B. Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers, Inc, Los Altos, CA, 1987.MATHGoogle Scholar
  4. [4]
    M. Bertero, T.A. Poggio, and V. Torre. Ill posed problems in early vision. Proceedings of the IEEE, 76(8):869–889, 1988. Special Issue on Computer Vision.CrossRefGoogle Scholar
  5. [5]
    P. Bézier. Mathematical and practical possibilities of UNISURF. In Barnhill and Riesenfeld [1], pages 127-152.Google Scholar
  6. [6]
    W. Boehm. On cubics: A survey. CGIP, 19:201–226, 1982.MATHGoogle Scholar
  7. [7]
    W. Böhm, G. Farin, and J. Kahmann. A survey of curve and surface methods in CAGD. CAGD, 1:1–60, 1984.MATHGoogle Scholar
  8. [8]
    P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numer. Math., 31:377–403, 1979.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    G. Dahlquist and Å. Björk. Numerical Methods. Prentice Hall, Englewoods Cliffs, NJ, 1974.Google Scholar
  10. [10]
    C. de Boor. On calculating with B-splines. J. of Approx. Theory., 6:50–62, 1972.MATHCrossRefGoogle Scholar
  11. [11]
    C. de Boor. A Practical Guide to Splines, volume 27 of Applied Mathematical Sciences. Springer Verlag, New York, NY, 1978.Google Scholar
  12. [12]
    F. R. de Hoog and M. F. Hutchinson. An efficient method for calculating smoothing splines using orthogonal transformations. Numer. Math., 50:311–319, 1987.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    M. Epstein. On the influence of parameterization in parametric interpolation. SIAM Journal Numer. Anal, 13(2):261–268, 1976.MATHCrossRefGoogle Scholar
  14. [14]
    G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, Inc, San Diego, CA, 1988.MATHGoogle Scholar
  15. [15]
    L. A. Ferrari, P. V. Sankar, and J. Sklansky. Efficient two-dimensional filters using B-spline functions. CVGIP, 35:152–169, 1986.Google Scholar
  16. [16]
    F. N. Fritsch and R. Carlson. Monotone piecewise cubic interpolation. SIAM Journal Numer. Anal, 17(2):238–246, 1980.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    W. Gordon and R. Riesenfeld. B-splines curves and surfaces. In Barnhill and Riesenfeld [1], pages 95-126.Google Scholar
  18. [18]
    M. Hohmeyer and B. Barsky. Rational continuity: Parametric, geometric and Frenet frame continuity of rational curves. ACM Trans. on Graphics, 8(4):335–359, 1989.MATHCrossRefGoogle Scholar
  19. [19]
    M. F. Hutchinson and F.R. de Hoog. Smoothing noisy data with spline functions. Numer. Math., 47:99–106, 1985.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, Inc, Englewood Cliff, 1989.MATHGoogle Scholar
  21. [21]
    G. S. Kimeldorf and G. Wahba. A correspondence between bayesian estimation on stochastic processes and smoothing by splines. The Annals of Mathematical Statistics, 41:495–502, 1970.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    D. Lee and T. Pavlidis. One dimensional regularization with discontinuities. In Proc. 1st Intern. Conf. Computer Vision, London, 1987.Google Scholar
  23. [23]
    F. Lu and E. E. Milios. Optimal local spline approximation of planar shape. In Proceedings of the ICASSP, 1991.Google Scholar
  24. [24]
    G. Nürnberger. Chebyshev approximation by splines with free knots and computation. In C. K. Chui, L. L. Shumaker, and J. D. Ward, editors, Approximation Theory V. Proceedings, College Station, Texas 1986, pages 511-514. Academic Press, 1986.Google Scholar
  25. [25]
    F. O’Sullivan. A statistical perspective on ill-posed inverse problems. Statistical Science, 1(4):502–527, 1986. With comments.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    D. Paglieroni. Control Point Algorithms for Contour Processing and Shape Analysis. PhD thesis, University of California at Davis, 1986.Google Scholar
  27. [27]
    D. Paglieroni and A. K. Jain. Control point transforms for shape representation and measurement. CVGIP, 42:87–111, 1988.Google Scholar
  28. [28]
    T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press Inc., Rockville, MA, 1982.CrossRefGoogle Scholar
  29. [29]
    T. Pavlidis. Curve fitting as a pattern recognition problem. In Proc. 6th Int. Conf. Pattern Recognition, pages 853-859. IEEE Computer Society Press, 1982.Google Scholar
  30. [30]
    M. Plass and M. Stone. Curve fitting with piecewise parametric cubics. Computer Graphics — SIGGRAPH ′83 Conf. Proc, 17(3):229–239, 1983.CrossRefGoogle Scholar
  31. [31]
    T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247:978–982, 1990.MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    T. Poggio, H. Voorhees, and A. Yuille. A regularized solution to edge detection. Journal of Complexity, 4:106–123, 1988.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    T. A. Paggio, V. Torre, and Ch. Koch. Computational vision and regularization theory. Nature, 317(26):314–319, 1985.CrossRefGoogle Scholar
  34. [34]
    D. L. Ragozin. Error bounds for derivatives estimates based on spline smoothing of exact or noisy data. J. of Approx. Theory, 37:335–355, 1983.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    C. H. Reinsch. Smoothing by spline functions. Numer. Math., 10:177–183, 1966.MathSciNetCrossRefGoogle Scholar
  36. [36]
    C. H. Reinsch. Smoothing by spline functions. II. Numer. Math., 16:451–454, 1971.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    E. J. Rodríguez, J.L.C. Sanz, D.C. Vargas, and M. Flickner. Fast least squares orthogonal spline fitting and its applications to shape analysis. TR 14-91, CRAAG — IBM Argentina, 1991.Google Scholar
  38. [38]
    P. Saint-Marc and G. Medioni. B-spline contour representation and symmetry detection. IRIS 262, Institute for Robotics and Intelligent Systems. University of Southern California, 1990.Google Scholar
  39. [39]
    E. Salari and S. Balaji. Recognition of partially ocluded objects using B-spline representation. Pattern Recognition, 24(7):653–660, 1991.CrossRefGoogle Scholar
  40. [40]
    K. Salkauskas. C 1 splines for interpolation of rapidly varying data. Rocky Mountain Journal of Math., 14(1):239–250, 1974.MathSciNetCrossRefGoogle Scholar
  41. [41]
    I. J. Schoenberg. Cardinal interpolation and spline functions. J. of Approx. Theory, 2:167–206, 1969.MathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    I. J. Schoenberg. Notes on spline functions V. Orthogonal or Legendre splines. J. of Approx. Theory, 13:84–104, 1975.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    I. Sekita, K. Toraichi, R. Mori, K. Yamamoto, and H. Yamada. Feature extraction of handwritten Japanese characters by splines functions for relaxation matching. Pattern Recognition, 21:9–17, 1988.CrossRefGoogle Scholar
  44. [44]
    B. Shahraray and D. J. Anderson. Optimal estimation of contour properties by cross-validated regularization. IEEE Transactions on PAMI, 11(6):600–610, 1989.CrossRefGoogle Scholar
  45. [45]
    L. Shumaker. Spline Functions: Basic Facts. John Wiley & Sons, New York, NY, 1981.Google Scholar
  46. [46]
    H. Späth and J. Meier. Flexible smoothing with periodic cubic splines and fitting with closed curves. Computing, 40:293–300, 1988.MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. IEEE PAMI, 8:413–424, 1986.CrossRefGoogle Scholar
  48. [48]
    A. M. Thompson, J. C. Brown, J. W. Kay, and D.M. Titterington. A study of methods of choosing the smoothing parameter in image restoration by regularization. IEEE Transactions on PAMI, 13(4):326–339, 1991.CrossRefGoogle Scholar
  49. [49]
    G. Wahba. Spline bases, regularization, and generalized cross validation for solving approximation problems with large quantities of noisy data. In E. W. Cheney, editor, Approximation Theory III, Proceedings, Austin, Texas. Academic Press, 1980.Google Scholar
  50. [50]
    G. Wahba and S. Wold. A completely automatic french curve: Fitting spline functions by cross validation. Communications in Statistics, 4:1–17, 1975.MathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    G. Wahba and S. Wold. Periodic splines for spectral density estimation: the use of cross validation for determining the degree of smoothing. Communications in Statistics, 4:125–141, 1975.MathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    J. Xu and Y. H. Yang. Generalized multidimensional orthogonal polynomials with applications to shape analysis. IEEE PAMI, 12(9):906–913, 1990.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • D. C. Vargas
  • E. J. Rodríguez
  • M. Flickner
  • J. L. C. Sanz

There are no affiliations available

Personalised recommendations