Skip to main content

Methods for Illumination-Invariant Image Processing

  • Chapter
Image Technology
  • 240 Accesses

Abstract

Illumination-invariant image processing is an extension of the classical technique of homomorphic filtering using a logarithmic point transformation. In this paper, traditional approaches to illumination-invariant processing are briefly reviewed and then extended using newer image processing techniques. Relevant hardware considerations are also discussed including the number of bits per pixel required for digitization, minimizing the dynamic range of the data for image processing, and camera requirements. Three applications using illumination-invariant processing techniques are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K.B. Benson: Television Engineering Handbook, McGraw-Hill Book Company, 1986

    Google Scholar 

  2. P. Cielo: Optical Techniques for Industrial Inspection, Academic Press, Inc., 1988, pp. 234-235

    Google Scholar 

  3. R.W. Conners, C.W. McMillin, K. Lin, R.E. Vasquez-Espinosa: Identifying and locating surface defects in wood: Part of an automated lumber processing system. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI5(6), 573–583 (1983)

    Article  Google Scholar 

  4. D.G. Daut, D. Zhao: Mathematical morphology and its application in machine vision. Visual Communications and Image processing IV, SPIE Vol. 1199, pp. 181–191 (1989)

    Google Scholar 

  5. I. Dinstein, F. Merkle, T.D. Lam, K.Y. Wong: Imaging system response linearization and shading correction. Optical Engineering, pp. 788-793 (1984)

    Google Scholar 

  6. Fairchild Weston CCD Imaging Databook, Milpitas, CA (1989)

    Google Scholar 

  7. Fordham Radio Catalog, Vol. 16 No. 5, Hauppauge, NY (1990)

    Google Scholar 

  8. R.W. Fries, J.W. Modestino: Image enhancement by stochastic homomorphic filtering. Transactions on Acoustics, Speech, and Signal Processing, ASSP-27(6):625–637 (1979)

    Article  Google Scholar 

  9. B. Gilbert, B. Clarke: Monolithic DC-to-120 MHz log-amp is stable and accurate. Analog Dialogue 23(3) (1989)

    Google Scholar 

  10. E.L. Hall: Computer Image Processing and Recognition, Academic Press (1979)

    Google Scholar 

  11. T.R. Hsing: Techniques of adaptive threshold setting for document scanning applications. Optical Engineering, 23(3):288–293 (1984)

    Article  Google Scholar 

  12. B. Kleinemeier: Real-time restoration of image sensor photoresponse nonuniformity. Optical Engineering, 24(1):160–170 (1985)

    Article  Google Scholar 

  13. J.W.V. Miller: Real-time system for the automatic inspection of uniform field objects. Proceedings of the Third Annual Applied Machine Vision Conference, Schaumburg, Illinois (1984)

    Google Scholar 

  14. J.W.V. Miller, P.S. Miller: Image Analysis System Employing Filter Look-Up Tables. U.S. Patent No. 4,941,191 (1990)

    Google Scholar 

  15. J.B. Murdoch: Illumination Engineering-From Edison’s Lamp to the Laser. Macmillan Publishing Co. (1985)

    Google Scholar 

  16. National Semiconductor Corporation Linear Databook, Santa Clara, CA (1982)

    Google Scholar 

  17. A.V. Oppenheim, R.W. Schäfer, T.G. Stockham: Nonlinear filtering of multiplied and convolved signals. Proceedings of the IEEE, 56(8):1264–1291 (1968)

    Article  Google Scholar 

  18. W.K. Pratt: Digital Image Processing, John Wiley & Sons, New York (1978)

    Google Scholar 

  19. R. Ray, J. Wilder: Visual and tactile sensing system for robotic acquisition of jumbled parts. Optical Engineering, 23(5):523–530 (1984)

    Article  Google Scholar 

  20. J.L.C. Sanz, D. Petkovic: Machine vision algorithms for automated inspection of thin-film disk heads. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):830–848 (1988)

    Article  Google Scholar 

  21. W.F. Schreiber: Image processing for quality improvement. Proceedings of the IEEE, Vol. 66, No. 12, pp. 1640–1651 (1978)

    Article  Google Scholar 

  22. S. Sternberg: Biomedical image processing. Computer, 16(1):22–34 (1983)

    Article  Google Scholar 

  23. T.G. Stockham: Image processing in the context of a visual model. Proceedings of the IEEE, 60(7):828–842 (1972)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, J.W.V., Shridhar, M. (1996). Methods for Illumination-Invariant Image Processing. In: Sanz, J.L.C. (eds) Image Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58288-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58288-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63528-1

  • Online ISBN: 978-3-642-58288-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics