Advertisement

Data Analysis pp 447-457 | Cite as

myVU: A Next Generation Recommender System Based on Observed Consumer Behavior and Interactive Evolutionary Algorithms

  • Andreas Geyer-Schulz
  • Michael Hahsler
  • Maximillian Jahn
Chapter
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

myVU is a next generation recommender system based on observed consumer behavior and interactive evolutionary algorithms implementing customer relationship management and one-to-one marketing in the educational and scientific broker system of a virtual university. myVU provides a personalized, adaptive WWW-based user interface for all members of a virtual university and it delivers routine recommendations for frequently used scientific and educational Web-sites.

Keywords

Genetic Algorithm Recommender System Mutation Operator Information Product Customer Relationship Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BELLMANN, S., LOHSE, G.L., and JOHNSON, E.J. (1999): Predictors of Online Buying Behavior. Communications of the ACM, 42(12), 32–32.CrossRefGoogle Scholar
  2. BILES, J.A., ANDERSON, P.G., and LOGGI, L.W. (1996): Neural Network Fitness Functions for a Musical IGA. In: Procs. of the Int. ICSC Symp. on Intelligent Industrial Automation (IIA’96) and Soft Computing (SOCO’96), ICSC Academic Press, Reading, B39 - B44.Google Scholar
  3. BLISCHOK, T.J. (1995): Every Transaction Tells a Story. Chain Store Age Executive, 71(3), 50–62.Google Scholar
  4. CALDWELL, C. and JOHNSTON, V.S. (1991): Tracking a Criminal Suspect through “Face-Space” with a Genetic Algorithm. In: R.K. Belew and L.B. Booker (Eds.): Procs. of the 4th Int. Conf. on Genetic Algorithms (ICGA ‘81), Morgan Kaufmann, San Mateo, 416–421.Google Scholar
  5. DAWKINS, R. (1986): The Blind Watchmaker. Longman, Harlow.Google Scholar
  6. FURUTA, H., MAEDA, K., and WATANABE, E. (1995): Application of Genetic Algorithm to Aesthetic Design of Bridge Structures. Microcomputers in Civil Engineering, 10, 415–421.CrossRefGoogle Scholar
  7. HAFNER, U. and ROSSLER, A. (1995): Interactive Optimization with Evolutionary Strategies as a Tool for Virtual Reality. In: M. Freter (Ed.): Procs. Virtual Reality World’95, IDG, Miinchen, 369–378.Google Scholar
  8. HOLLAND, J.H. (1975): Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor.Google Scholar
  9. INTRONA, L. and NISSENBAUM, H. (2000): Defining the Web: The Politics of Search Engines. IEEE Computer, 33(1), 54–62.CrossRefGoogle Scholar
  10. KELLY, K. (1998): New Rules for the New Economy - 10 Radical Strategies for a Connected World. Viking Penguin, New York.Google Scholar
  11. RESNICK, P. and VARIAN, H.R. (1997): Recommender Systems. Communications of the ACM, 40(3), 56–58.CrossRefGoogle Scholar
  12. SHAPIRO, S. and VARIAN, H.R. (1999): Information Rules: A Strategic Guide to the Network Economy. Harvard Business School Press, Boston.Google Scholar
  13. SMITH, J. (1991): Designing Biomorphs with an Interactive Genetic Algorithm. In: R.K. Belew and L.B. Booker (Eds.): Procs. of the 4th Int. Conf. on Genetic Algorithms (IC GA’91), Morgan Kaufmann, San Mateo, 535–538.Google Scholar
  14. TAKAGI, H. (1996a): System Optimization Without Numerical Target. In: M.H. Smith, M.A. Lee, J. Keller, and J. Yen (Eds.): Procs. Of the 1996 NAFIPS Conference, IEEE Service Center, Piscataway, 351–354.Google Scholar
  15. TAKAGI, H. (1996b): Interactive GA for System Optimization: Problems and Solution. In: H.J. Zimmermann (Ed.): Procs. 4th EUFIT Conference (EUFIT’96), Verlag Mainz, Aachen, 1440–1444.Google Scholar
  16. TSICHRITZIS, D. (1999): Reengineering the University. Communications of the ACM, 42(6), 93–100.CrossRefGoogle Scholar
  17. WAGNER, U. and TAUDES, A. (1987): Stochastic Models of Consumer Behaviour. European Journal of Operations Research, 29(1), 1–23.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2000

Authors and Affiliations

  • Andreas Geyer-Schulz
    • 1
  • Michael Hahsler
    • 1
  • Maximillian Jahn
    • 1
  1. 1.Abteilung für Informationswirtschaft, Institut für Informationsverarbeitung und InformationswirtschaftWirtschaftsuniversität WienWienAustria

Personalised recommendations