Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 1324 Accesses

Abstract

In this chapter grid generation will be discussed in relation to the establishment of the correspondence between points (x, y) in the irregular physical domain and points (ξ, η) in the regular computational domain. A conceptual approach to grid generation is to fix the values of ξ and η on the physical boundaries first. Subsequently interior points are located by determining the intersection of coordinate lines of opposite families drawn between corresponding boundary points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlberg, J.H., Nilson, E.N., Walsh, J.L. (1967): Theory of Splines and Their Applications (Academic, New York)

    MATH  Google Scholar 

  • Anderson, O.L., Davis, R.T., Hankins, G.B., Edwards, D.E. (1982): In Numerical Grid Generation, ed. by J.F. Thompson (North-Holland, Amsterdam) pp. 507–524

    Google Scholar 

  • Cooley, J.W., Tuckey, J.W. (1965): Math. Comput. 19, 297–301

    Article  MATH  Google Scholar 

  • Davis, R.T. (1979): “Numerical methods for coordinate generation based on Schwarz-Christoffel transformations”, AIAA Paper No. 79-1463

    Google Scholar 

  • Eiseman, P.R. (1979): J. Comput. Phys. 33, 118–150

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Eiseman, P.R. (1982a): In Numerical Grid Generation, ed. by J.F. Thompson (North-Holland, Amsterdam) pp. 193–234

    Google Scholar 

  • Eiseman, P.R. (1982b): J. Comput. Phys. 47, 331–351

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Eiseman, P.R. (1982c): J. Comput. Phys. 47, 352–374

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Eiseman, P.R. (1985): Annu. Rev. Fluid Mech. 17, 487–522

    Article  ADS  Google Scholar 

  • Eiseman, P.R. (1987): Comput. Methods Appl. Mech. Eng. 64, 321–349

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Eriksson, L.E. (1982): AIAA J. 20, 1318–1319

    Article  ADS  Google Scholar 

  • Forsythe, G.E., Malcolm, M.A., Moler, C. (1977): Computer Methods for Mathematical Computations (Prentice-Hall, Englewood Cliffs, N.J.)

    MATH  Google Scholar 

  • Gordon, W.J., Hall, C.A. (1973): Int. J. Numer. Methods Eng. 7, 461–477

    Article  MathSciNet  MATH  Google Scholar 

  • Gordon, W.J., Thiel, L.C. (1982): In Numerical Grid Generation, ed. by J.F. Thompson (North-Holland, Amsterdam) pp. 171–192

    Google Scholar 

  • Ives, D.C. (1976): AIAA J. 14, 1006–1011

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ives, D.C. (1982): In Numerical Grid Generation, ed. by J.F. Thompson (North-Holland, Amsterdam) pp. 107–136

    Google Scholar 

  • Kennon, S.R., Dulikravich, G.S. (1986): AIAA J. 24, 1069–1073

    Article  ADS  MATH  Google Scholar 

  • Kim, H.J., Thompson, J.F. (1990): AIAA J. 28, 470–477

    Article  ADS  MATH  Google Scholar 

  • Mavriplis, D.J. (1990): AIAA J. 28, 213–221

    Article  ADS  Google Scholar 

  • McNally, W.D. (1972): “Fortran Program for Generating a Two-Dimensional Orthogonal Mesh Between Two Arbitrary Boundaries”, NASA TN-D6766

    Google Scholar 

  • Milne-Thomson, L. (1968): Theoretical Hydrodynamics (Macmillan, London)

    MATH  Google Scholar 

  • Moretti, G. (1980): “Grid Generation Using Classical Techniques”, NASA CP 2166, 1–35

    Google Scholar 

  • Nakahashi, K., Egami, K. (1991): “An Automatic Euler Solver Using an Unstructured Upwind Method”, Comput. Fluids (to appear)

    Google Scholar 

  • Rizzi, A., Eriksson, L.E. (1981): “Transfinite Mesh Generation and Damped Euler Equation Algorithm for Transonic Flow around Wing-Body Configurations”, A1AA Paper 81-0999

    Google Scholar 

  • Roberts, G.O. (1971): Lecture Notes in Physics, Vol. 8 (Springer, Berlin, Heidelberg) pp. 171–176

    Google Scholar 

  • Rubbert, P.E., Lee, K.D. (1982): In Numerical Grid Generation, ed. by J.F. Thompson (North-Holland, Amsterdam) pp. 235–252

    Google Scholar 

  • Ryskin, G., Leal, L.G. (1983): J. Comput. Phys. 50, 71–100

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Smith, R.E. (1982): In Numerical Grid Generation, ed. by J.F. Thompson (North-Holland, Amsterdam) pp. 137–170

    Google Scholar 

  • Steger, J.L., Sorenson, R.L. (1980): “Use of Hyperbolic Partial Differential Equations to Generate Body-Fitted Coordinates”, NASA CP 2166, pp. 463–178

    Google Scholar 

  • Temperton, C. (1979): J. Comput. Phys. 31, 1–20

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Theodorsen, T., Garrick, I.E. (1933): “General Potential Theory of Arbitrary Wing Sections”, NACA TR 452

    Google Scholar 

  • Thomas, P.D. (1982): In Numerical Grid Generation, ed. by J.F. Thompson (North-Holland, Amsterdam) pp. 667–686

    Google Scholar 

  • Thompson, J.F. (1982): In Numerical Grid Generation, ed. by J.F. Thompson (North-Holland, Amsterdam) pp. 1–31

    Google Scholar 

  • Thompson, J.F. (1984): AIAA J. 22, 1505–1523

    Article  ADS  MATH  Google Scholar 

  • Thompson, J.F. (1985): Appl. Num. Math. 1, 3–28

    Article  MATH  Google Scholar 

  • Thompson, J.F. (1988): AIAA J. 26, 271–272

    Article  ADS  Google Scholar 

  • Thompson, J.F., Thames, F.C., Mastin, C.W. (1977a): J. Comput. Phys. 24, 274–302

    Article  ADS  MATH  Google Scholar 

  • Thompson, J.F., Thames, F.C., Mastin, C.W. (1977b): “Boundary-Fitted Curvilinear Coordinate Systems for Solution of Partial Differential Equations on Fields Containing any Number of Arbitrary Two-Dimensional Bodies”, NASA CR-2729

    Google Scholar 

  • Thompson, J.F., Warsi, Z.U.A., Mastin, C.W. (1982): J. Comput. Phys. 47, 1–108

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Thompson, J.F., Warsi, Z.U.A., Mastin, C.W. (1985): Numerical Grid Generation, Foundations and Applications (North-Holland, Amsterdam)

    Google Scholar 

  • Trefethen, L.N. (1980): SIAM J. Sci. Stat. Comput. 1, 82–102

    Article  MathSciNet  MATH  Google Scholar 

  • Vinokur, M. (1983): J. Comput. Phys. 50, 215–234

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Woods, L.C. (1961): The Theory of Subsonic Plane Flow (Cambridge University Press, Cambridge)

    MATH  Google Scholar 

  • Yu, N.J., Chen, H.C., Su, T.Y., Kao, T.J. (1990): “Development of a General Multiblock Flow Solver for Complex Configurations”, in Notes Num. Fluid Mech. 29 (Vieweg, Wiesbaden) pp. 603–612

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fletcher, C.A.J. (1991). Grid Generation. In: Computational Techniques for Fluid Dynamics 2. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58239-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58239-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53601-7

  • Online ISBN: 978-3-642-58239-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics