Skip to main content

Part of the book series: Springer Series in Computational Physics ((SCIENTCOMP))

  • 2064 Accesses

Abstract

In practice the algebraic equations that result from the discretisation process, Sect. 3.1, are obtained on a finite grid. It is to be expected, from the truncation errors given in Sects. 3.2 and 3.3, that more accurate solutions could be obtained on a refined grid. These aspects are considered further in Sect. 4.4. However for a given required solution accuracy it may be more economical to solve a higher-order finite difference scheme on a coarse grid than a low-order scheme on a finer grid, if the exact solution is sufficiently smooth. This leads to the concept of computational efficiency which is examined in Sect. 4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carnahan, B., Luther, H.A., Wilkes, J.O. (1969): Applied Numerical Analysis Wiley, New York)

    Google Scholar 

  • Dahlquist, G., Bjorck, A. (1974): Numerical Methods, trans, by N. Anderson (Prentice-Hall, Englewood Cliffs, N.J.)

    Google Scholar 

  • Finlayson, B.A. (1980): Nonlinear Analysis in Chemical Engineering (McGraw-Hill, New York)

    Google Scholar 

  • Fletcher, C.A.J. (1983): J. Comput. Phys. 51, 159–188

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gentzsch, W., Neves, K.W. (1988): “Computational Fluid Dynamics: Algorithms & Supercomputers”, Agardograph 311, NATO

    Google Scholar 

  • Hindmarsh, A.C., Gresho, P.M., Griffiths, D.F. (1984): Int. J. Numer. Methods Fluids, 4, 853–897

    Article  ADS  MATH  Google Scholar 

  • Isaacson, E., Keller, H.B. (1966): Analysis of Numerical Methods (Wiley, New York)

    MATH  Google Scholar 

  • Mitchell, A.R., Griffiths, D.F. (1980): The Finite Difference Method in Partial Differential Equations (Wiley, Chichester)

    MATH  Google Scholar 

  • Morton, K.W. (1980): Int. J. Numer. Methods Eng. 15, 677–683

    Article  MathSciNet  MATH  Google Scholar 

  • Noye, J. (1984): Chap. 2 in Numerical Solution of Differential Equations, ed. by J. Noye (North-Holland, Amsterdam)

    Google Scholar 

  • Richtmyer, R.D., Morton, K.W. (1967): Difference Methods for Initial-Value Problems (Interscience, New York)

    MATH  Google Scholar 

  • Smith, G.D. (1985): Nonlinear Solution of Partial Differential Equations, 3rd ed. (Oxford University Press, Oxford)

    Google Scholar 

  • Sod, G.A. (1985): Numerical Methods in Fluid Dynamics (Cambridge University Press, Cambridge)

    Book  MATH  Google Scholar 

  • Trapp, J.A., Ramshaw, J.D. (1976): J. Comput. Phys. 20, 238–242

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fletcher, C.A.J. (1998). Theoretical Background. In: Computational Techniques for Fluid Dynamics 1. Springer Series in Computational Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58229-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58229-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53058-9

  • Online ISBN: 978-3-642-58229-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics