Count Riccati and the Early Days of the Riccati Equation

  • Sergio Bittanti
Part of the Communications and Control Engineering Series book series (CCE)


Towards the turn of the seventeenth century, when the baroque was giving way to the enlightenment, there lived in the Republic of Venice a gentleman, the father of nine children, by the name of Jacopo Franceso Riccati. On the cold New Year’s Eve of 1720, he wrote a letter to his friend Giovanni Rizzetti, where he proposed two new differential equations. In modern symbols, these equations can be written as follows:
$$\dot x = \alpha {x^2} + \beta {t^m}$$
$$\dot x = \alpha {x^2} + \beta t + \gamma {t^2}$$
where m is a constant. This is probably the first document witnessing the early days of the Riccati Equation, an equation which was to become of paramount importance in the centuries to come.


Riccati Equation Continue Fraction Order Differential Equation Full Generality Integral Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. di Rovero. Vita del Conte Jacopo Riccati. in Opere del Conte Jacopo Riccati nobile trevigiano. G. Rocchi. Lucca 1765.Google Scholar
  2. 2.
    A. A. Michieli. Una famiglia di matematici e di poligrafi trivigiani: i Riccati. in Atti del Reale Istituto Veneto di Scienze Lettere ed Arti. Tomo 102, Parte ii, 1942–43.Google Scholar
  3. 3.
    G.B. Marzari. Elogio di Jacopo Riccati pronuncialo nella grand’ aula del regio liceo del Tagliamento per il riaprimento degli studi il 15 Novembre 1812. G. Trento e figli, Treviso, 1812.Google Scholar
  4. 4.
    Cantor M. Vorlesungen über Geschichte der Mathematik, Band iii, Leipzig Teubner, 1901.Google Scholar
  5. 5.
    I. Szabo. Die Familie der Mathematiker Riccati. I Mitteilung. in Humanismus und Technik, Berlin 1974, p. 37–75; II Mitteilung in Humanismus und Technik, Berlin 1974, p. 109-131.Google Scholar
  6. 6.
    L. Grugnetti. Sulla vecchia e attuale equazione di Riccati. in Rendiconti del Seminario Facolta’ di Scienze dell’Universita’ di Cagliari, Vol. 55, Fasc. 1, 1985, p. 7–23.MathSciNetzbMATHGoogle Scholar
  7. 7.
    L. Euler. De risolutione aequationis dy + a yydx = bx dx. Novi Commentari academiae scientiarum Petropolitanae 9 (1762/3, 1764), p. 154–169.Google Scholar
  8. 8.
    L. Euler. An Essay on Continued Fractions. Mathematical Systems Theory, Vol. 18, p. 295–328, 1985 (translation of the original paper by Euler published in 1744).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    J. Liouville. L’equation de Riccati. Journal de Mathematiques pures et appliques. Tome VI, p. 1–13, 1841.Google Scholar
  10. 10.
    L. Grugnetti. L’Equazione di Riccati. Bollettino di Storia delle Matematiche, Vol VI, fasc. 1, p. 45–82, 1986.MathSciNetGoogle Scholar
  11. 11.
    A. Masotti. Maria Gaetana Agnesi. Rendiconti del seminario Matematico e Fisico di Milano, 14, 1940Google Scholar
  12. 12.
    L.M. Osen. Women in Mathematics. The MIT Press Cambridge, 1974Google Scholar
  13. 13.
    C. Truesdell. Maria Gaetana Agnesi. Archive for History of Exact Sciences, 40, 2, p. 113–142, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    C.B. Boyer. The History of Mathematics. J. Wiley and Sons, 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Sergio Bittanti

There are no affiliations available

Personalised recommendations