Advertisement

Classical Electrostatics in Molecular Interactions

  • Anthony J. Stone
Chapter
Part of the Perspectives in Antisense Science book series (BSPS, volume 139)

Abstract

For many years it has been known that interactions between molecules at long range can be understood in terms of perturbation theory in which the perturbation is the electrostatic interaction between the particles comprising the molecules [1]. The first-order energy is the classical electrostatic interaction between the molecular charge distributions, and the second-order energy can be separated into the induction energy, arising from the distortion of each molecule in the field of its neighbours, and the dispersion energy, which describes the electrostatic interaction arising through correlated fluctuations in the molecular charge distributions.

Keywords

Field Gradient Direction Cosine Multipole Moment Multipole Expansion Interaction Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buckingham AD (1967) Adv. Chem. Phys. 12: 107Google Scholar
  2. 2.
    Stone AJ, Tough RJA (1984) Chem. Phys. Lett. 110: 123CrossRefGoogle Scholar
  3. 3.
    Brink DM, Satchler GR (1968) Angular momentum, Clarendon Press, Oxford, p 151Google Scholar
  4. 4.
    Griffith JS (1961) The theory of transition-metalions, Cambridge University Press, p 200Google Scholar
  5. 5.
    Stone AJ, Price SL (1988) J. Phys. Chem. 92: 3325CrossRefGoogle Scholar
  6. 6.
    Vigné-Maeder F, Claverie P (1988) J. Chem. Phys. 88: 4934CrossRefGoogle Scholar
  7. 7.
    Stone AJ (1981) Chem. Phys. Lett. 83: 233; Stone AJ, Alderton M (1985) Molec. Phys. 56: 1047CrossRefGoogle Scholar
  8. 8.
    Pullman A, Perahia D (1978) Theor. Chim. Acta 48: 29CrossRefGoogle Scholar
  9. 9.
    Rico JF, Alvarez-Collado JR, Paniagua M (1985) Molec. Phys. 56: 1145CrossRefGoogle Scholar
  10. 10.
    Cooper DL, Stutchbury NCJ (1985) Chem. Phys. Lett. 120: 167CrossRefGoogle Scholar
  11. 11.
    Sokalski WA, Sawaryn A (1987) J. Chem. Phys. 87: 526CrossRefGoogle Scholar
  12. 12.
    Stone AJ (1984) In: Orville-Thomas WJ, Yarwood J (eds) Molecular liquids. D. Reidel, NATO A.S.I. seriesGoogle Scholar
  13. 13.
    Price SL, Stone AJ, Alderton M (1985) Molec. Phys. 56: 1047CrossRefGoogle Scholar
  14. 14.
    Tong C-S, Stone AJ (in preparation)Google Scholar
  15. 15.
    Stone AJ (1985) Molec. Phys. 56: 1065CrossRefGoogle Scholar
  16. 16.
    REDUCE, an algebraic programming system (1984) The Rand Corporation, Santa Monica, CaliforniaGoogle Scholar
  17. 17.
    Buckingham AD (1978) In: Pullman B (ed) Intermolecular forces: from diatomics to biopolymers, Wiley, New York, p 1Google Scholar
  18. 18.
    Applequist J (1977) Acc. Chem. Research 10: 79; (1983) J. Math. Phys. 24: 736; (1984) Chem. Phys. 85: 279; (1985) J. Chem. Phys. 83: 809CrossRefGoogle Scholar
  19. 19.
    Stevens RM, Pitzer R, Lipscomb WN (1963) J. Chem. Phys. 38: 550CrossRefGoogle Scholar
  20. 20.
    Amos RD, Rice JE (1987) CADPAC: The Cambridge Analytical Derivatives Package, issue 4.0, CambridgeGoogle Scholar
  21. 21.
    Buckingham AD, Fowler PW, Stone AJ (1986) Intern. Rev. Phys. Chem. 5: 107CrossRefGoogle Scholar
  22. 22.
    Stone AJ, Fowler PW (1987) J. Phys. Chem. 91: 509CrossRefGoogle Scholar
  23. 23.
    Stone AJ, Le Sueur CR, Fowler PW, Muenter JS (in preparation)Google Scholar
  24. 24.
    Stone AJ (1989) Chem. Phys. Lett. 155: 102CrossRefGoogle Scholar
  25. 25.
    Barke JA (1953) Proc. Roy. Soc. A 219: 367CrossRefGoogle Scholar
  26. 26.
    Gray CG, Lo BWN (1976) Chem. Phys. 14: 73CrossRefGoogle Scholar
  27. 27.
    Piecuch P (1986) Molec. Phys. 59: 1067, 1085, 1097CrossRefGoogle Scholar
  28. 28.
    Dalgarno A, Stewart AL (1956) Proc. Roy. Soc. A 238: 276; Dalgarno A, Lynn N (1957) Proc. Phys. Soc. (London) A70: 223CrossRefGoogle Scholar
  29. 29.
    Kreek H, Meath WJ (1969) J. Chem. Phys. 50: 2289CrossRefGoogle Scholar
  30. 30.
    Stone AJ (1989) Chem. Phys. Lett. 155: 111CrossRefGoogle Scholar
  31. 31.
    Casimir HBG, Polder D (1948) Phys. Rev. 73: 360CrossRefGoogle Scholar
  32. 32.
    Buckingham AD, Fowler PW (1983) J. Chem. Phys. 79: 6426; (1985) Canad. J. Chem. 63: 2018CrossRefGoogle Scholar
  33. 33.
    Hurst GJB, Fowler PW, Buckingham AD, Stone AJ (1986) Int. J. Quantum Chem. 29: 1223CrossRefGoogle Scholar
  34. 34.
    Rendell AP, Bacskay GB, Hush NS (1985) Chem. Phys. Lett. 117: 400CrossRefGoogle Scholar
  35. 35.
    Altman RS, Marshall MD, Klemperer W (1982) Disc. Faraday Soc. 73: 116; (1983) J. Chem. Phys. 79: 57Google Scholar
  36. 36.
    Rodger PM, Stone AJ, Tildesley DJ (1988) Molec. Phys. 63: 173; (1988) Chem. Phys. Letters 145:365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Anthony J. Stone
    • 1
  1. 1.University Chemical LaboratoryCambridgeEngland

Personalised recommendations