Advertisement

Semiclassical Methods for Large Molecules of Biological Importance

  • Charles L. BrooksIII
Chapter
  • 115 Downloads
Part of the Perspectives in Antisense Science book series (BSPS, volume 139)

Abstract

Protein and nucleic acids are the instruments by which chemical and physical processing takes place in living systems. The twenty amino acids and four nucleotides of which proteins and nucleic acids, respectively, are composed provide the range of chemical functionality necessary to carry out this processing. Through the structural arrangement and motional characteristics of chemically labile groups, these biopolymers control and conduct transport, chemical synthesis and degradation processes which are necessary for their functioning. Thus, the detailed investigation of motion, structure and reactivity of proteins and nucleic acids is the key to understanding biological systems at a molecular level, and presents a major challenge to biologists, chemists and physicists.

Keywords

Free Energy Difference Classical Region Thermodynamic Integration Verlet Algorithm Semiclassical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brooks CL, III, Karplus M, Pettitt BM (1988) Adv Chem Phys 71: complete volumeGoogle Scholar
  2. 2.
    McCammon JA, Harvey S (1987) Dynamics of proteins and nucleic acids, (Cambridge University Press, Combridge or NYCrossRefGoogle Scholar
  3. 3.
    Alder BJ, Wainright TE (1959) J Chem Phys 31: 459CrossRefGoogle Scholar
  4. 4.
    Rahman A (1964) Phys Rev A136: 405Google Scholar
  5. 5.
    McCammon JA, Gelin BR, Karplus M, (1977) Nature 267: 585CrossRefGoogle Scholar
  6. 6.
    Burkhart U, Allinger NL, Molecular Mechanics (1982) Am Chem Soc Washington, D. CGoogle Scholar
  7. 7.
    See, for example Jackson JD, Classical and Electrodynamics, (John Wiley, New York 1975)Google Scholar
  8. 8.
    Sprik M, Klein M (1988) J Chem Phys, 89: 7556CrossRefGoogle Scholar
  9. 9.
    Lybrand T, Kollman P (1985) J Chem Phys, 83: 2923; Cieplak P, Lybrand T Kollman P (1985) J Chem Phys 86: 6393; Cieplak P, Kollmann P, Lybrand T (1990) J Chem Phys 92: 6755CrossRefGoogle Scholar
  10. 10.
    Karplus M, Porter RN, Sharma RD (1964) J Chem Phys, 40: 2033CrossRefGoogle Scholar
  11. 11.
    Miller WH, Handy NC, Adams JE (1980) J Chem Phys, 72: 99CrossRefGoogle Scholar
  12. 12.
    See, for example: Chandrasekhar J, Smith SF, Jorgensen WL (1985) J Am Chem Soc, 107: 154; Jorgensen WL, Buckner JK ( 1986) J Phys Chem, 90: 4651; Blake JF and Jorgensen WL (1987) J Am Chem Soc, 109: 3856; Madura JD, Jorgensen WL, (1986) J Am Chem Soc, 108: 2517CrossRefGoogle Scholar
  13. 13.
    Bergsma JP, Reimers JR, Wilson KR, Hynes JT (1986) J Chem Phys, 85: 5625; Bergsma JP, Gertner BJ, Wilson KR, Hynes JT (1987) J Chem Phys, 86: 1356; Gertner BJ, Bergsma JP, Wilson KR, Lee S, Hynes JT (1987) J Chem Phys, 86: 1377CrossRefGoogle Scholar
  14. 14.
    Chandler D, Wolynes PG (1981) J Chem Phys, 74: 4078CrossRefGoogle Scholar
  15. 15.
    Kuki A, Wolynes PG (1987) Science, 236: 1647; Zheng C, Wong CF, McCammon J, Wolynes PG (1989) Chim Scripta, 29A: 171; Zheng C, McCammon JA, Wolynes PG, (1989) Proc Natl Acad Sci, 86: 6441CrossRefGoogle Scholar
  16. 16.
    Bader JS, Kuharski RA, Chandler D (1990) J Chem Phys, 93: 230CrossRefGoogle Scholar
  17. 17.
    Brooks BR, Bruccoleri R, Olafson B, States D, Swaminathan S, Karplus M (1983) J Comp Chem, 4: 187CrossRefGoogle Scholar
  18. 18.
    Weiner SJ, Kollman P, Nuguyen DT, Case D (1986) J Comp Chem, 7: 230CrossRefGoogle Scholar
  19. 19.
    Gibson KD, Scheraga HA (1967) Proc Nat Acad Sci, USA 58: 420; Dunfield L, Burgess A Scheraga H (1978) J Phys Chem, 82: 2609CrossRefGoogle Scholar
  20. 20.
    Stone AJ, Price SL (1988) J Phys Chcm, 92: 3325CrossRefGoogle Scholar
  21. 21.
    Jorgensen W (1981) J Am Chem Soc, 103: 335; ibid. 103, 341 (1981)CrossRefGoogle Scholar
  22. 22.
    (a) Singh, Kollman PA (1984) J Comp Chem, 5: 129. (b) Chirlian L, Francal M, (1987) J Comp Chem, 8: 894CrossRefGoogle Scholar
  23. 23.
    Allen MP, Tildesley DJ, Computer Simulations of Liquids, (Oxford University Press, London, 1987)Google Scholar
  24. 24.
    Brünger A, Brooks CL, III, Karplus M (1984) Chem Phys Lett, 105: 495CrossRefGoogle Scholar
  25. 25.
    Brooks CL III, Brünger A, Karplus M (1985) Biopolymers 24: 434; Brooks CL III, Karplus M (1989) J. Mol Biol., 208: 159CrossRefGoogle Scholar
  26. 26.
    Verlet L (1967) Phys Rev 159: 98CrossRefGoogle Scholar
  27. 27.
    Hockney RW Easfwasel JW, Computer Simulations Using Particles, (McGraw Hill, New York, 1981)Google Scholar
  28. 28.
    Beeman D (1976) J Comp Phys 20: 130CrossRefGoogle Scholar
  29. 29.
    Andersen HC (1980) J Chem Phys 72: 2384CrossRefGoogle Scholar
  30. 30.
    Nose S (1984) J Chem Phys 81: 511; Hoover WG (1985) Phys Rev A, 31: 1695; Evans DJ Hollihan BL (1985) J Chem Phys, 83: 4069CrossRefGoogle Scholar
  31. 31.
    Evans DJ, Morris GP (1983) Chem Phys, 77: 63CrossRefGoogle Scholar
  32. 32.
    Berendsen HJC, Postma JPM, van Gusteren WF, DiNola A, Haak JR, (1984) J Chem-Phys 81: 3684CrossRefGoogle Scholar
  33. 33.
    Zwanzig RW (1954) J Chem Phys, 22: 1420CrossRefGoogle Scholar
  34. 34.
    Chandler D (1978) J Chem Phys, 68: 2959; McCammon JA, Karplus M, (1979) Proc Natl Acad Sci, USA, 76: 3585CrossRefGoogle Scholar
  35. 35.
    Tembe BL, McCammon JA (1984) Comput Chem, 8: 281CrossRefGoogle Scholar
  36. 36.
    Fleischman SH, Brooks CL III, (1987) J Chem Phys, 87: 3029CrossRefGoogle Scholar
  37. 37.
    Mezei M, Beveridgc DL (1986) Annals NY Acad Sci, 483: 1CrossRefGoogle Scholar
  38. 38.
    Jorgensen WL, Ravimohan C (1985) J Chem Phys, 83: 3050CrossRefGoogle Scholar
  39. 39.
    Brooks CL III (1986) J Phys Chem, 90: 6680CrossRefGoogle Scholar
  40. 40.
    (a) Tobias DJ, Brooks CL III (1987) Chem Phys Lett, 142: 472; (b)ibid. (1988) J Chem Phys, 89: 5115; (c) Tobias DJ, Brooks CL, III, Fleischman SH (1989) Chem Phys Lett 156: 256CrossRefGoogle Scholar
  41. 41.
    See, for example: Born M, Huang K, Dynamical Theory of Crystal Lattices, (Oxford University Press, London, 1965); Sutcliffe BT, “Fundamentals of Computational Qantum Mechanics” in Computational Techniques in Quantum Chemistry, Dierchsen GHF, Sutcliffe BT, Veillard A, Eds, (Reidel, Boston, 1975)Google Scholar
  42. 42.
    Topia O Johannia G (1981) J Chem Phys 75: 3624CrossRefGoogle Scholar
  43. 43.
    Tapia O (1982) I: Ratjczak H Orville-Thomas WJ (eds) Molecular interactions, Wiley, Chichester, vol 3 p 47Google Scholar
  44. 44.
    Tapia O, Goscinski O (1975) Mol Phys, 6: 1653CrossRefGoogle Scholar
  45. 45.
    Weiner SJ, Singh UC, Kollman PA (1985) J Am Chem Soc, 107: 2219CrossRefGoogle Scholar
  46. 46.
    Dewar MJS et al, (1985) J Am Chem Soc 107: 3902CrossRefGoogle Scholar
  47. 47.
    Field M, Bash P, Karplus M (1990) J Comp Chem, 11: 700CrossRefGoogle Scholar
  48. 48.
    Warshel A, Weiss RM (1980) J Am Chem Soc, 102: 6218CrossRefGoogle Scholar
  49. 49.
    Bash PA, Field MJ, Karplus M (1987) J Am Chem Soc, 109: 8092CrossRefGoogle Scholar
  50. 50.
    Bash PA, Field MJ, Karplus M, work in progressGoogle Scholar
  51. 51.
    Singh UC (1988) Proc Natl Acad Sci, 85: 4280CrossRefGoogle Scholar
  52. 52.
    Croighton S, Hwang J-K, Warshel S, Parson WW, Norris J (1988) Biochemistry, 27: 774CrossRefGoogle Scholar
  53. 53.
    Parr RG, Yang W, Density-functional theory of atoms, molecules, (Oxford University Press, New York, 1989)Google Scholar
  54. 54.
    Ringnaldu M, Won Y, Freisner R (1990) J Chem Phys 92: 1163.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Charles L. BrooksIII
    • 1
  1. 1.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations