Skip to main content

Semiclassical Methods for Large Molecules of Biological Importance

  • Chapter
  • 365 Accesses

Part of the book series: Perspectives in Antisense Science ((BSPS,volume 139))

Abstract

Protein and nucleic acids are the instruments by which chemical and physical processing takes place in living systems. The twenty amino acids and four nucleotides of which proteins and nucleic acids, respectively, are composed provide the range of chemical functionality necessary to carry out this processing. Through the structural arrangement and motional characteristics of chemically labile groups, these biopolymers control and conduct transport, chemical synthesis and degradation processes which are necessary for their functioning. Thus, the detailed investigation of motion, structure and reactivity of proteins and nucleic acids is the key to understanding biological systems at a molecular level, and presents a major challenge to biologists, chemists and physicists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks CL, III, Karplus M, Pettitt BM (1988) Adv Chem Phys 71: complete volume

    Google Scholar 

  2. McCammon JA, Harvey S (1987) Dynamics of proteins and nucleic acids, (Cambridge University Press, Combridge or NY

    Book  Google Scholar 

  3. Alder BJ, Wainright TE (1959) J Chem Phys 31: 459

    Article  CAS  Google Scholar 

  4. Rahman A (1964) Phys Rev A136: 405

    Google Scholar 

  5. McCammon JA, Gelin BR, Karplus M, (1977) Nature 267: 585

    Article  CAS  Google Scholar 

  6. Burkhart U, Allinger NL, Molecular Mechanics (1982) Am Chem Soc Washington, D. C

    Google Scholar 

  7. See, for example Jackson JD, Classical and Electrodynamics, (John Wiley, New York 1975)

    Google Scholar 

  8. Sprik M, Klein M (1988) J Chem Phys, 89: 7556

    Article  CAS  Google Scholar 

  9. Lybrand T, Kollman P (1985) J Chem Phys, 83: 2923; Cieplak P, Lybrand T Kollman P (1985) J Chem Phys 86: 6393; Cieplak P, Kollmann P, Lybrand T (1990) J Chem Phys 92: 6755

    Article  CAS  Google Scholar 

  10. Karplus M, Porter RN, Sharma RD (1964) J Chem Phys, 40: 2033

    Article  CAS  Google Scholar 

  11. Miller WH, Handy NC, Adams JE (1980) J Chem Phys, 72: 99

    Article  CAS  Google Scholar 

  12. See, for example: Chandrasekhar J, Smith SF, Jorgensen WL (1985) J Am Chem Soc, 107: 154; Jorgensen WL, Buckner JK ( 1986) J Phys Chem, 90: 4651; Blake JF and Jorgensen WL (1987) J Am Chem Soc, 109: 3856; Madura JD, Jorgensen WL, (1986) J Am Chem Soc, 108: 2517

    Article  Google Scholar 

  13. Bergsma JP, Reimers JR, Wilson KR, Hynes JT (1986) J Chem Phys, 85: 5625; Bergsma JP, Gertner BJ, Wilson KR, Hynes JT (1987) J Chem Phys, 86: 1356; Gertner BJ, Bergsma JP, Wilson KR, Lee S, Hynes JT (1987) J Chem Phys, 86: 1377

    Article  CAS  Google Scholar 

  14. Chandler D, Wolynes PG (1981) J Chem Phys, 74: 4078

    Article  CAS  Google Scholar 

  15. Kuki A, Wolynes PG (1987) Science, 236: 1647; Zheng C, Wong CF, McCammon J, Wolynes PG (1989) Chim Scripta, 29A: 171; Zheng C, McCammon JA, Wolynes PG, (1989) Proc Natl Acad Sci, 86: 6441

    Article  CAS  Google Scholar 

  16. Bader JS, Kuharski RA, Chandler D (1990) J Chem Phys, 93: 230

    Article  CAS  Google Scholar 

  17. Brooks BR, Bruccoleri R, Olafson B, States D, Swaminathan S, Karplus M (1983) J Comp Chem, 4: 187

    Article  CAS  Google Scholar 

  18. Weiner SJ, Kollman P, Nuguyen DT, Case D (1986) J Comp Chem, 7: 230

    Article  CAS  Google Scholar 

  19. Gibson KD, Scheraga HA (1967) Proc Nat Acad Sci, USA 58: 420; Dunfield L, Burgess A Scheraga H (1978) J Phys Chem, 82: 2609

    Article  CAS  Google Scholar 

  20. Stone AJ, Price SL (1988) J Phys Chcm, 92: 3325

    Article  CAS  Google Scholar 

  21. Jorgensen W (1981) J Am Chem Soc, 103: 335; ibid. 103, 341 (1981)

    Article  CAS  Google Scholar 

  22. (a) Singh, Kollman PA (1984) J Comp Chem, 5: 129. (b) Chirlian L, Francal M, (1987) J Comp Chem, 8: 894

    Article  CAS  Google Scholar 

  23. Allen MP, Tildesley DJ, Computer Simulations of Liquids, (Oxford University Press, London, 1987)

    Google Scholar 

  24. Brünger A, Brooks CL, III, Karplus M (1984) Chem Phys Lett, 105: 495

    Article  Google Scholar 

  25. Brooks CL III, Brünger A, Karplus M (1985) Biopolymers 24: 434; Brooks CL III, Karplus M (1989) J. Mol Biol., 208: 159

    Article  Google Scholar 

  26. Verlet L (1967) Phys Rev 159: 98

    Article  CAS  Google Scholar 

  27. Hockney RW Easfwasel JW, Computer Simulations Using Particles, (McGraw Hill, New York, 1981)

    Google Scholar 

  28. Beeman D (1976) J Comp Phys 20: 130

    Article  Google Scholar 

  29. Andersen HC (1980) J Chem Phys 72: 2384

    Article  CAS  Google Scholar 

  30. Nose S (1984) J Chem Phys 81: 511; Hoover WG (1985) Phys Rev A, 31: 1695; Evans DJ Hollihan BL (1985) J Chem Phys, 83: 4069

    Article  CAS  Google Scholar 

  31. Evans DJ, Morris GP (1983) Chem Phys, 77: 63

    Article  CAS  Google Scholar 

  32. Berendsen HJC, Postma JPM, van Gusteren WF, DiNola A, Haak JR, (1984) J Chem-Phys 81: 3684

    Article  CAS  Google Scholar 

  33. Zwanzig RW (1954) J Chem Phys, 22: 1420

    Article  CAS  Google Scholar 

  34. Chandler D (1978) J Chem Phys, 68: 2959; McCammon JA, Karplus M, (1979) Proc Natl Acad Sci, USA, 76: 3585

    Article  CAS  Google Scholar 

  35. Tembe BL, McCammon JA (1984) Comput Chem, 8: 281

    Article  CAS  Google Scholar 

  36. Fleischman SH, Brooks CL III, (1987) J Chem Phys, 87: 3029

    Article  CAS  Google Scholar 

  37. Mezei M, Beveridgc DL (1986) Annals NY Acad Sci, 483: 1

    Article  Google Scholar 

  38. Jorgensen WL, Ravimohan C (1985) J Chem Phys, 83: 3050

    Article  CAS  Google Scholar 

  39. Brooks CL III (1986) J Phys Chem, 90: 6680

    Article  CAS  Google Scholar 

  40. (a) Tobias DJ, Brooks CL III (1987) Chem Phys Lett, 142: 472; (b)ibid. (1988) J Chem Phys, 89: 5115; (c) Tobias DJ, Brooks CL, III, Fleischman SH (1989) Chem Phys Lett 156: 256

    Article  CAS  Google Scholar 

  41. See, for example: Born M, Huang K, Dynamical Theory of Crystal Lattices, (Oxford University Press, London, 1965); Sutcliffe BT, “Fundamentals of Computational Qantum Mechanics” in Computational Techniques in Quantum Chemistry, Dierchsen GHF, Sutcliffe BT, Veillard A, Eds, (Reidel, Boston, 1975)

    Google Scholar 

  42. Topia O Johannia G (1981) J Chem Phys 75: 3624

    Article  Google Scholar 

  43. Tapia O (1982) I: Ratjczak H Orville-Thomas WJ (eds) Molecular interactions, Wiley, Chichester, vol 3 p 47

    Google Scholar 

  44. Tapia O, Goscinski O (1975) Mol Phys, 6: 1653

    Article  Google Scholar 

  45. Weiner SJ, Singh UC, Kollman PA (1985) J Am Chem Soc, 107: 2219

    Article  CAS  Google Scholar 

  46. Dewar MJS et al, (1985) J Am Chem Soc 107: 3902

    Article  CAS  Google Scholar 

  47. Field M, Bash P, Karplus M (1990) J Comp Chem, 11: 700

    Article  CAS  Google Scholar 

  48. Warshel A, Weiss RM (1980) J Am Chem Soc, 102: 6218

    Article  CAS  Google Scholar 

  49. Bash PA, Field MJ, Karplus M (1987) J Am Chem Soc, 109: 8092

    Article  CAS  Google Scholar 

  50. Bash PA, Field MJ, Karplus M, work in progress

    Google Scholar 

  51. Singh UC (1988) Proc Natl Acad Sci, 85: 4280

    Article  CAS  Google Scholar 

  52. Croighton S, Hwang J-K, Warshel S, Parson WW, Norris J (1988) Biochemistry, 27: 774

    Article  Google Scholar 

  53. Parr RG, Yang W, Density-functional theory of atoms, molecules, (Oxford University Press, New York, 1989)

    Google Scholar 

  54. Ringnaldu M, Won Y, Freisner R (1990) J Chem Phys 92: 1163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brooks, C.L. (1991). Semiclassical Methods for Large Molecules of Biological Importance. In: Maksić, Z.B. (eds) Theoretical Treatment of Large Molecules and Their Interactions. Perspectives in Antisense Science, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58183-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58183-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63495-6

  • Online ISBN: 978-3-642-58183-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics