Advertisement

Intermolecular Forces and the Properties of Molecular Solids

  • Ad van der Avoird
Chapter
  • 117 Downloads
Part of the Perspectives in Antisense Science book series (BSPS, volume 139)

Abstract

The notion of intermolecular potentials is based on separability at two different levels. The Born-Oppenheimer separation between electronic and nuclear motions prescribes the use of the electronic energy surface as the potential energy for the nuclear motions. The nuclear motions can be separated into internal molecular motions, i.e. molecular vibrations, and external motions, i.e. (relative) translations and rotations of whole molecules. The latter separation follows from the shape of the potential energy surface, which is determined by the nature of the interactions involved. Molecules are kept together by “chemical”, mainly covalent, bonds between the atoms, which, for neutral molecules, are considerably stronger than the intermolecular interactions. For molecular ions the intermolecular Coulomb interaction energies are equally large as the intramolecular covalent binding energies, but even in this case the steep distance dependence and strong directionality of the covalent bonds make the potential energy surface depend most sensitively on the internal molecular coordinates. So there is a clear separation between internal molecular coordinates and external ones. Molecules are recognizable by their electronic and vibrational spectra; the intermolecular interactions cause (slight) modifications of these spectra (line shifts, splittings, broadening). This separation becomes less distinct for larger molecules which are often flexible in some of their internal coordinates. The motions along those specific coordinates will be strongly influenced by intermolecular interactions and coupled to the overall motions of the molecules.

Keywords

Intermolecular Force Molecular Crystal Multipole Moment Intermolecular Potential Vibron Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Avoird A, Wormer PES, Mulder F, Berns RM (1980) Topics Curr. Chem. 93: 1Google Scholar
  2. 2.
    Kaplan IG (1986) Theory of molecular interactions. North Holland, AmsterdamGoogle Scholar
  3. 3.
    van Lenthe JH, van Duijneveldt-van de Rijdt JCGM, van Duijeneveldt FB (1987) Advan. Chem. Phys. 69: 521Google Scholar
  4. 4.
    Hobza P, Zahradnik R (1988) Intermolecular complexes. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Chalasiński G, Gutowski M (1988) Chem. Rev. 88: 943Google Scholar
  6. 6.
    Buckingham AD, Fowler PW, Hutson JM (1988) Chem. Rev. 88: 963Google Scholar
  7. 7.
    Stone AJ (1989) in: Maksic ZB (ed) Theoretical models of chemical bonding. Springer, Berlin, part 4, chapter 6Google Scholar
  8. 8.
    Rijks W, Wormer PES (1989) J. Chem. Phys. 90: 6507, and references thereinGoogle Scholar
  9. 9.
    Rijks W, van Heeringen M, Wormer PES (1989) J. Chem. Phys. 90: 6501Google Scholar
  10. 10.
    Chipman DM, Hirschfelder JO (1973) J. Chem. Phys. 59: 2830, 2838Google Scholar
  11. 11.
    Jeziorski B, Kolos W (1977) Int. J. Quantum Chem. 12 Suppl. 1: 91Google Scholar
  12. 12.
    Rijks W, Gerritsen M, Wormer PES (1989) Mol. Phys. 66: 929Google Scholar
  13. 13.
    Douketis C, Scoles G, Marchetti S, Zen M, Thakkar AJ (1982) J. Chem. Phys. 76: 3057Google Scholar
  14. 14.
    Tang KT, Toennies JP (1984) J. Chem. Phys. 80: 3726Google Scholar
  15. 15.
    Knowles PJ, Meath WJ (1987) Mol. Phys. 60: 1143Google Scholar
  16. 16.
    Matsen FA, Klein DJ, Foyt DC (1971) J. Phys. Chem. 75: 1866Google Scholar
  17. 17.
    Western CM, Langridge-Smith PRR, Howard BJ (1981) Mol. Phys. 44: 145Google Scholar
  18. 18.
    Brechignac Ph, De Benedictis S, Halberstadt N, Whitaker BJ (1985) J. Chem. Phys. 83: 2064Google Scholar
  19. 19.
    Wormer PES, van der Avoird A, (1984) J. Chem. Phys. 81: 1929Google Scholar
  20. 20.
    Miller RE (1988) Science 240: 447Google Scholar
  21. 21.
    Faubel M (1983) Advan. At. Mol. Phys. 19: 345Google Scholar
  22. 22.
    Buck U, Huisken F, Schleusener J (1980) J. Chem. Phys. 72: 1512Google Scholar
  23. 23.
    Bergmann K, Hefter U, Witt J (1980) J. Chem. Phys. 72: 4777Google Scholar
  24. 24.
    Hirschfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases and liquids. Wiley, New YorkGoogle Scholar
  25. 25.
    Maitland GC, Rigby M, Smith EB, Wakeham WA (1981) Intermolekular forces. Clarendon, OxfordGoogle Scholar
  26. 26.
    Gray CG, Gubbins KE (1984) Theory of molecular fluids. Clarendon, OxfordGoogle Scholar
  27. 27.
    Briels WJ, Jansen APJ, van der Avoird A (1986) Adv. Quantum Chem. 18: 131Google Scholar
  28. 28.
    Brink DM, Satchler GR (1975) Angular momentum. Clarendon, OxfordGoogle Scholar
  29. 29.
    Le Roy RJ, Hutson JM (1987) J. Chem. Phys. 86: 837Google Scholar
  30. 30.
    Le Roy RJ, Carley JS (1980) Advan. Chem. Phys. 42: 353Google Scholar
  31. 31.
    Berns RM, van der Avoird A (1980) J. Chem. Phys. 72: 6107Google Scholar
  32. 32.
    van der Avoird A, Wormer PES, Jansen APJ (1986) J. Chem. Phys. 84: 1629Google Scholar
  33. 33.
    Wasiutynski T, van der Avoird A, Berns RM (1978) J. Chem. Phys. 69: 5288Google Scholar
  34. 34.
    Pertsin AJ, Kitaigorodsky AI (1987) The atom-atom potential method for organic molecular solids. Springer, BerlinGoogle Scholar
  35. 35.
    Hair SR, Beswick JA, Janda KC (1988) J. Chem. Phys. 89: 3970Google Scholar
  36. 36.
    Claverie P (1978) in: Pullman B (ed) Intermolecular interactions: From diatomics to biopolymers, Wiley, New York, p 69Google Scholar
  37. 37.
    Rullman JAC, van Duijnen PTh (1988) Mol. Phys. 63: 451Google Scholar
  38. 38.
    Gay JG, Berne BJ (1981) J. Chem. Phys. 74: 3316Google Scholar
  39. 39.
    Stone AJ, Price SL (1988) J. Phys. Chem. 92: 3325Google Scholar
  40. 40.
    Fuchikama N, Block R (1982) Physica B 112: 369Google Scholar
  41. 41.
    Jansen APJ, van der Avoird A (1987) J. Chem. Phys. 86: 3583Google Scholar
  42. 42.
    Margenau H, Kestner NR (1971) Theory of intermolecular forces, 2nd edn. Pergamon, New YorkGoogle Scholar
  43. 43.
    Meath WJ, Aziz RA (1984) Mol. Phys. 52: 225Google Scholar
  44. 44.
    Loubeyre P (1987) Phys. Rev. Lett. 58: 1857Google Scholar
  45. 45.
    Bulski M (1989) in: Polian et al. (ed) Simple molecular systems at very high density. Plenum, New YorkGoogle Scholar
  46. 46.
    Bulski M, Chalasiński (1987) J. Chem. Phys. 86: 937Google Scholar
  47. 47.
    Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon, OxfordGoogle Scholar
  48. 48.
    Cochran W (1971) CRC Critical reviews in solid state science 2: 1Google Scholar
  49. 49.
    Jansen APJ, Briels WJ, van der Avoird A (1984) J. Chem. Phys. 81: 3648Google Scholar
  50. 50.
    van der Avoird A, Briels WJ, Jansen APJ (1984) J. Chem. Phys. 81: 3658Google Scholar
  51. 51.
    Briels WJ, Jansen APJ, van der Avoird A (1984) J. Chem. Phys. 81: 4118Google Scholar
  52. 52.
    Jansen APJ (1988) J. Chem. Phys. 88: 1914Google Scholar
  53. 53.
    Jansen APJ, Schoorl R (1988) Phys. Rev. B38: 11711Google Scholar
  54. 54.
    Jansen APJ, van der Avoird A (1987) J. Chem. Phys. 86: 3597Google Scholar
  55. 55.
    Jansen APJ (1986) Phys. Rev. B33: 6352Google Scholar
  56. 56.
    Jansen APJ (1988) J. Phys. C: Solid State Phys. 21: 4221Google Scholar
  57. 57.
    Janssen WBJM, van der Avoird A (1990) Phys. Rev. B in pressGoogle Scholar
  58. 58.
    van den Berg THM, van der Avoird A (1989) J. Phys. Condensed Matter, 1: 4047Google Scholar
  59. 59.
    Jongenelis APJM, van den Berg THM, Jansen APJ, Schmidt J, van der Avoird A (1988) J. Chem. Phys. 89: 4023Google Scholar
  60. 60.
    Jongenelis APJM, van der Berg THM, Schmidt J, van der Avoird A (1989) J. Phys. Condensed Matter, 1: 5051Google Scholar
  61. 61.
    Maradudin AA, Vosko SH (1968) Rev. Mod. Phys. 40: 1Google Scholar
  62. 62.
    Maradudin AA, Montroll EW, Weiss GH, Ipatova P (1971) Theory of lattice dynamics in the harmonic approximation, Academic Press, New YorkGoogle Scholar
  63. 63.
    Maradudin AA (1974) in: Horton GK, Maradudin AA (ed) Dynamical properties of solids, Vol. 1, North Holland, Amsterdam, p 1Google Scholar
  64. 64.
    Califano S, Schettino V, Neto N (1981) Lattice dynamics of molecular crystals, Lecture notes in Chemistry, Vol. 26, Springer, BerlinGoogle Scholar
  65. 65.
    Barron THK, Klein ML (1974) in: Horton GK, Maradudin AA (ed) Dynamical properties of solids, Vol. 1, North Holland, Amsterdam, p 391Google Scholar
  66. 66.
    Girardeau MD, Mazo RM (1973) Advan. Chem. Phys. 24: 187Google Scholar
  67. 67.
    Feynman RP (1972) Statistical mechanics, Benjamin, Reading, MassachusettsGoogle Scholar
  68. 68.
    Löwdin PO (1988) Int. J. Quantum Chem. Symp. 22: 337Google Scholar
  69. 69.
    Neto N, Kirin D (1979) Chem. Phys. 44: 245Google Scholar
  70. 70.
    Taddei G, Bonadeo H, Marzocchi MP, Califano S (1973) J. Chem. Phys. 58: 966Google Scholar
  71. 71.
    Werthamer NR (1976) in: Klein ML, Venables J (ed) Rare gas solids, Vol. 1, Academic Press, LondonGoogle Scholar
  72. 72.
    Wasiutynski T (1976) Phys. Status Solidi B76: 175Google Scholar
  73. 73.
    Hansen JP, McDonald IR (1976). Theory of simple liquids, Academic Press, New YorkGoogle Scholar
  74. 74.
    Kirkwood JG (1940) J. Chem. Phys. 8: 205Google Scholar
  75. 75.
    James HM, Keenan TA (1959) J. Chem. Phys. 31: 12Google Scholar
  76. 76.
    Raich JC (1972) J. Chem. Phys. 56: 2395Google Scholar
  77. 77.
    Raich JC, Etters RD (1968) Phys. Rev. 168, 425Google Scholar
  78. 78.
    Dunmore PV (1972) J. Chem. Phys. 57: 3348Google Scholar
  79. 79.
    Fredkin DR, Werthamer NR (1965) Phys. Rev. A138: 1527Google Scholar
  80. 80.
    Hüller A (1974) Phys. Rev. B10: 4403Google Scholar
  81. 81.
    Scott TA (1976) Phys. Rep. 27: 89Google Scholar
  82. 82.
    Kjems JK, Dolling G (1975) Phys. Rev. Bl1: 1639Google Scholar
  83. 83.
    Raich JC, Gillis NS (1977) J. Chem. Phys. 66: 846Google Scholar
  84. 84.
    Luty T, van der Avoird A, Berns RM (1980) J. Chem. Phys. 73: 5305Google Scholar
  85. 85.
    Kjems JK, Dolling G (1981) Phys. Rev. B24: 2967Google Scholar
  86. 86.
    Heberlein DC, Adams ED, Scott TA (1970) J. Low Temp. Phys. 2: 449Google Scholar
  87. 87.
    van den Berg THM, Bongers MMG, van der Avoird A (1990) to be publishedGoogle Scholar
  88. 88.
    DeFotis GC (1981) Phys. Rev. B23: 4714 and references thereinGoogle Scholar
  89. 89.
    Kobashi K, Klein ML, Chandrasekharan V (1979) J. Chem. Phys. 71: 843Google Scholar
  90. 90.
    Etters RD, Helmy AA, Kobashi K (1983) Phys. Rev. B28: 2166Google Scholar
  91. 91.
    Kuchta B (1985) Chem. Phys. 95: 391Google Scholar
  92. 92.
    Bier KD, Jodl HJ (1984) J. Chem. Phys. 81: 1192Google Scholar
  93. 93.
    Silvera IF (1980) Rev. Mod. Phys. 52: 393Google Scholar
  94. 94.
    Silvera IF (1989) in: Polian et al. (ed) Simple molecular systems at very high density, Plenum, New YorkGoogle Scholar
  95. 95.
    van Kranendonk J (1985) Solid hydrogen, Plenum, New YorkGoogle Scholar
  96. 96.
    Klein ML, Koehler R (1970) J. Phys. C3: L102Google Scholar
  97. 97.
    England W, Raich JC, Etters RD (1976) J. Low Temp. Phys. 22: 213Google Scholar
  98. 98.
    Lagendijk A, Silvera IF (1981) Phys. Lett. 84A: 28Google Scholar
  99. 99.
    Schäfer J, Köhler W (1989) Z. Physik D13: 217Google Scholar
  100. 100.
    Silvera IF, Wijngaarden RJ (1981) Phys. Rev. Lett. 47: 39Google Scholar
  101. 101.
    Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations, McGraw-Hill, New YorkGoogle Scholar
  102. 102.
    Califano S (1976) Vibrational states, Wiley, LondonGoogle Scholar
  103. 103.
    Chaplot SL, Mierzejewski A, Pawley GS, Lefebvre J, Luty T (1983) J. Phys. C: Solid State Phys. 16: 625Google Scholar
  104. 104.
    Abramson EH, Jongenelis APJM, Schmidt J (1987) J. Chem. Phys. 87: 3719Google Scholar
  105. 105.
    Kopelman R (1976) in: Lim EC (ed) Excited states, Vol. 2, Academic Press, New York, p 33Google Scholar
  106. 106.
    Economou EN (1983) Green’s functions in quantum physics, 2nd ed., Springer, Berlin, Chap. 7Google Scholar
  107. 107.
    Bellows JC, Prasad PN, Monberg EM, Kopelman R (1978) Chem. Phys. Lett. 54: 439Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Ad van der Avoird
    • 1
  1. 1.Institute of Theoretical ChemistryUniversity of NijmegenED NijmegenThe Netherlands

Personalised recommendations