Advertisement

Chemical Fragmentation Approach to the Quantum Chemical Description of Extended Systems

  • János G. ángyán
  • Gábor Náray-Szabó
Chapter
Part of the Perspectives in Antisense Science book series (BSPS, volume 139)

Abstract

The proper description of the electronic structure of extended systems by state-of-the-art methods remains a challenging task [1] of quantum chemistry. In the past few years the notion of “large molecular systems” has undergone a considerable evolution, and species, which seemed almost impossible to treat by ab initio quantum chemistry are now in the domain of routine calculations. This development is mainly due to the revolution of computer technology (vector and/or parallel supercomputers) and new computational techniques, which are better adapted to the new generation of computers, like the direct SCF method [2]. The application of advanced computational techniques made it possible to undertake such spectacular calculations like the ab initio study of the C 60 Buckminsterfullerene [3] or the largest system ever studied by ab initio SCF calculations, the C150H30 molecule [4]. It seems that in the very near future several theoretical chemistry laboratories will be in the position to perform routinely calculations on molecules or molecular aggregates, containing 500/600 electrons [5, 6].

Keywords

Wave Function Quantum Chemical Description Electro Negativity Equalization Method Covalent Crystal Large Molecular System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clementi E, Detrich J, Chin S, Corongiu G, Folsom D, Logan D, Caltabiano R, Carnevali A, Helin J, Russo M, Gnudi A, Palamidese P (1986) In: Clementi E, Chin S (eds) Structure and dynamics of nucleic acids, proteins, and membranes. Plenum, New York, p 403Google Scholar
  2. 2.
    Almlöf J, Faegri Jr. K, Korsell K (1983) J Comput Chem 3: 3003Google Scholar
  3. 3.
    Lüthi HP, Almlöf J (1987) Chem Phys Lett 135: 357Google Scholar
  4. 4.
    Almlöf J, Lüthi HP (1988) Chem Des Automat News 2:(8): 1Google Scholar
  5. 5.
    Häser M, Ahlrichs R (1989) J Comput Chem 10: 104Google Scholar
  6. 6.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel (1989) Chem Phys Lett 162: 165Google Scholar
  7. 7.
    Pauling L (1960) The nature of the chemical bond. Cornell, Ithaca NYGoogle Scholar
  8. 8.
    Náray-Szabó G, Surján PR, ángyán JG (1987) Applied quantum chemistry. Akadémiai Kiadó Reidel, Budapest DordrechtGoogle Scholar
  9. 9.
    Surján PR (1984) Croat Chim Acta 57: 833Google Scholar
  10. 10.
    Minkin VI, Osipov OA, Zhdanov YA (1970) Dipole moments in organic chemistry. Plenum, New YorkGoogle Scholar
  11. 11.
    LeFèvre RJW (1965) Adv Phys Org Chem 3: 1Google Scholar
  12. 12.
    Claverie P (1978) In: Pullman (ed) Intermolecular interactions: From diatomics to biopolymers, Wiley. New York, p 69Google Scholar
  13. 13.
    Surján PR (1989) In: Maksic ZB (ed) Theoretical models of chemical bonding, Part 2, The concept of chemical bond, Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. 14.
    Náray-Szabó G, Bleha T (1982) In: Csizmadia IG (ed) Molecular structure and conformation: Recent advances. Elsevier, Amsterdam, p 267 (Progress in theoretical organic chemistry, vol 3)Google Scholar
  15. 15.
    Jaffé HH, Orchin M (1962) Theory and application of ultraviolet spectroscopy. Wiley, New YorkGoogle Scholar
  16. 16.
    Davydov AS (1973) Theory of molecular excitons. McGraw Hill, New YorkGoogle Scholar
  17. 17.
    Snatzke G (1979) Angew Chem Int Ed Engl 18: 363Google Scholar
  18. 18.
    Patai S (ed) (1964) The chemistry of functional groups. Wiley, ChichesterGoogle Scholar
  19. 19.
    Colthup NB, Daly LH, Wiberley SE (1975) Introduction to infared and Raman spectroscopy, 2nd edn Academic, New YorkGoogle Scholar
  20. 20.
    Tapia O (1982) In: Ratajczak H, Orville-Thomas WJ (eds) Intermolecular Interactions. vol 2, chap 2, Wiley, ChichesterGoogle Scholar
  21. 21.
    Stoneham AM (1975) Theory of defects in solids. Oxford University Press, OxfordGoogle Scholar
  22. 22.
    Shustorovich E (1984) J Am Chem Soc 106: 6479Google Scholar
  23. 23.
    Siegbahn PEM, Blomberg MRA, Bauschlicher CW jr (1984) J Chem Phys 81: 4Google Scholar
  24. 24.
    Whangbo MH, Schlegel HB, Wolfe S (1977) J Am Chem Soc 99: 1296Google Scholar
  25. 25.
    Bernardi F, Bottom A (1982) In: Csizmadia IG (ed) Molecular structure and conformation: Recent advances. Elsevier, Amsterdam, p 65 (Progress in theoretical organic chemistry, vol 3)Google Scholar
  26. 26.
    Náray-Szabó G (1984) Croat Chem Acta 57: 901 and references thereinGoogle Scholar
  27. 27.
    Bader RFW, Nguyen-Dang TT (1981) Adv Quantum Chem 14: 63Google Scholar
  28. 28.
    Bader RFW (1985) Acc Chem Res 18: 9Google Scholar
  29. 29.
    Bader RFW, Tal Y, Anderson SG, Nguyen-Dang TT (1980) Isr J Chem 19: 8Google Scholar
  30. 30.
    Bader RFW, Nguyen-Dang TT, Tal Y (1981) Rep Prog Phys 44: 893Google Scholar
  31. 31.
    Gatti C, Fantucci P, Pacchioni G (1987) Theoret Chim Acta 72: 433Google Scholar
  32. 32.
    Epiotis ND (1988) Pure Appl Chem 60: 157; Nouv J Chim, to be publishedGoogle Scholar
  33. 33.
    Bader RFW (1988) Pure Appl Chem 60: 145Google Scholar
  34. 34.
    Srebrenik S, Bader RFW (1975) J Chem Phys 63: 3945Google Scholar
  35. 35.
    Daudel R, Leroy G, Peeters D, Sana M (1983) Quantum chemistry, Wiley-Interscience, New YorkGoogle Scholar
  36. 36.
    Becker P (1977) Phys Scripta 15: 119Google Scholar
  37. 37.
    Wiberg K (1989) In: Maksic ZB (ed) Theoretical models of chemical bonding, vol 1 Springer, Berlin Heidelberg New YorkGoogle Scholar
  38. 38.
    Malrieu JP (1977) In: Segal GA (ed) Semiempirical methods of electronic structure calculation. Part A: techniques. Plenum, New York, p 69 (Modern theoretical chemistry, vol 7)Google Scholar
  39. 39.
    Boca R (1982) Theoret Chim Acta 61: 179Google Scholar
  40. 40.
    Wolfe S, Mitchell DJ, Whangbo MH (1978) J Am Chem Soc 100: 1936, 3698Google Scholar
  41. 41.
    Kost D, Schlegel HB, Mitchell DJ, Wolfe S (1979) Can J Chem 57: 729Google Scholar
  42. 42.
    Bernardi F, Bottoni A (1981) Theoret Chim Acta 58: 245Google Scholar
  43. 43.
    Moffitt W (1954) Rep Prog Phys 17: 173Google Scholar
  44. 44.
    Bálint-Kürti GG, Karplus M (1974) In: March NH (ed) Orbital theories of molecules and solids, Clarendon, Oxford, p 250Google Scholar
  45. 45.
    Schipper PE (1987) Austrian J Chem 40: 635Google Scholar
  46. 46.
    Mayer I (1983) Int J Quantum Chem 23: 323Google Scholar
  47. 47.
    Maksic ZB, Eckert-Maksic M, Rupnik K (1984) Croat Chem Acta 57: 1295Google Scholar
  48. 48.
    Maksic ZB (1986) Comp Maths with Appls 12B: 697Google Scholar
  49. 49.
    Maksic ZB (1988) J Mol Struct (Theochem) 170: 39Google Scholar
  50. 50.
    Maksic ZB (1989) In: Maruani J (ed) Molecules in physics, chemistry and biology, vol 3 Kluwer Academic, Dordrecht, p 49Google Scholar
  51. 51.
    Hall GG (1951) Proc Roy Soc (London) Ser A 205: 541Google Scholar
  52. 52.
    Sándorfy C (1955) Can J Chem 33: 1337Google Scholar
  53. 53.
    Del Re G (1958) J Chem Soc 4031Google Scholar
  54. 54.
    Hoyland JR (1968) J Am Chem Soc 90: 2227Google Scholar
  55. 55.
    Diner S, Malrieu JP, Claverie P (1969) Theoret Chim Acta 13: 1Google Scholar
  56. 56.
    Náray-Szabó G (1976) Acta Phys Acad Sci Hung 40: 261Google Scholar
  57. 57.
    Surján PR, Révész M, Mayer I (1981) J Chem Soc Faraday Trans 2 77: 1129Google Scholar
  58. 58.
    Gibbs GV, Meagher EP, Newton MD, Swanson DK (1981) In: O’Keefe M, Navrotsky A (eds) Structure and bonding in crystals, Academic, New York, vol 1, p 195Google Scholar
  59. 59.
    Sauer J, Zahradnik R (1984) Int J Quantum Chem 26: 793Google Scholar
  60. 60.
    Messmer RP (1977) In: Segal GA (ed) Semiempirical methods of electronic structure calculation. Part B: Applications. Plenum, New York, p 215 (Modern theoretical chemistry, vol 8)Google Scholar
  61. 61.
    László I (1982) Int J Quantum Chem 21: 813Google Scholar
  62. 62.
    Náray-Szabó G, Kramer G, Nagy P, Kugler S (1987) J Comput Chem 8: 555Google Scholar
  63. 63.
    Révész M, Bertóti I, Mink G, Mayer I (1988) J Mol Struct (Theochem) 181: 335Google Scholar
  64. 64.
    Dovesi R, Pisani C, Roetti C, Silvi B (1987) J Chem Phys 86: 6967Google Scholar
  65. 65.
    McWeeny R (1959) Proc Roy Soc (London) Ser A 253: 242Google Scholar
  66. 66.
    McWeeny R (1960) Rev Mod Phys 32: 335Google Scholar
  67. 67.
    McWeeny R, Sutcliffe BT (1969) Methods of mecular quantum mechanics, Academic, LondonGoogle Scholar
  68. 68.
    Hoffman DK, Ruedenberg K, Verkade JG (1977) Structure and Bonding 33: 57Google Scholar
  69. 69.
    Bishop DM (1967) Adv Quantum Chem 3: 25Google Scholar
  70. 70.
    Lykos PG, Parr RG (1956) J Chem Phys 24: 1166Google Scholar
  71. 71.
    Parr RG, Ellison FO, Lykos PG (1956) J Chem Phys 24: 1106Google Scholar
  72. 72.
    Szász L (1985) Pseudopotential theory of atoms and molecules, J. Wiley, New YorkGoogle Scholar
  73. 73.
    McWeeny R, Ohno K (1960) Proc Roy Soc (London) Ser A 255: 367Google Scholar
  74. 74.
    Huzinaga S, Cantu AA (1971) J Chem Phys 55: 5543Google Scholar
  75. 75.
    Adams WH (1961) J Chem Phys 34: 89Google Scholar
  76. 76.
    Gilbert TL (1964) In: Löwdin PO, Pullman B (eds) Molecular orbitals in chemistry, physics and biology. Academic, New York, p 409Google Scholar
  77. 77.
    Kunz AB (1973) J Phys B 6: L47Google Scholar
  78. 78.
    Matsuoka O (1977) J Chem Phys 66: 1245Google Scholar
  79. 79.
    McWeeny R, Steiner E (1965) Adv Quantum Chem 2: 93Google Scholar
  80. 80.
    Kutzelnigg W (1966) J Chem Phys 40: 3640Google Scholar
  81. 81.
    Surján PR (1984) Phys Rev A 30: 43Google Scholar
  82. 82.
    Klessinger M, McWeeny R (1965) J Chem Phys 67: 2728Google Scholar
  83. 83.
    Mehler EL (1977) J Chem Phys 67: 2728Google Scholar
  84. 84.
    Mehler EL (1981) J Chem Phys 74: 6298Google Scholar
  85. 85.
    Mehler EL (1978) Int J Quantum Chem Quantum Chem Symp 12: 407Google Scholar
  86. 86.
    Fülscher MP, Mehler EL (1986) Int J Quantum Chem 29: 627Google Scholar
  87. 87.
    Fülscher MP, Mehler EL (1988) J Mol Struct (Theochem) 165: 319Google Scholar
  88. 88.
    Kirtman B, de Melo CP (1981) J Chem Phys 75: 4592Google Scholar
  89. 89.
    Kirtman B (1982) J Phys Chem 86: 1059Google Scholar
  90. 90.
    Kirtman B (1983) J Chem Phys 79: 835Google Scholar
  91. 91.
    Kirtman B, de Melo CP (1986) Int J Quantum Chem 89: 1209Google Scholar
  92. 92.
    Kirtman B, Dykstra CE (1986) J Chem Phys 85: 2791Google Scholar
  93. 93.
    Dykstra CE (1988) Ab initio calculation of structures and properties of molecules. Elsevier, Amsterdam, chap 5Google Scholar
  94. 94.
    McWeeny R (1962) Rev Mod Phys 32: 335Google Scholar
  95. 95.
    Gordon MS, England W (1972) J Am Chem Soc 94: 5168Google Scholar
  96. 96.
    Claverie P (1978) in Ref [12], pp 180–182Google Scholar
  97. 97.
    Mulliken RS (1955) J Chem Phys 23: 1833Google Scholar
  98. 98.
    Mayer I (1983) Chem Phys Lett 97: 270; (1983) Int J Quantum Chem 23: 341Google Scholar
  99. 99.
    Jug K (1973) Theoret Chim Acta 31: 63Google Scholar
  100. 100.
    Thole BT, van Duijnen PT (1983) Theoret Chim Acta 63: 209Google Scholar
  101. 101.
    Brobjer JT, Murrell JN (1981) Chem Phys Lett 77: 601; JCS Faraday Trans 2 78: 1853Google Scholar
  102. 102.
    Cox SR, Williams DE (1981) J Comput Chem 2: 304Google Scholar
  103. 103.
    Ray NK, Shibata M, Bolis R, Rein R (1985) Int J Quantum Chem 27: 427Google Scholar
  104. 104.
    Rullman JAC (1988) Ph D Thesis, University of Groningen, NetherlandsGoogle Scholar
  105. 105.
    Némethy G, Pottle MS, Scheraga H (1983) J Phys Chem 87: 1883Google Scholar
  106. 106.
    Pettitt BM, Karplus M (1985) J Am Chem Soc 107: 1166Google Scholar
  107. 107.
    Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) J Comput Chem 7: 230Google Scholar
  108. 108.
    Jorgensen WL, Swenson CJ (1985) J Am Chem Soc 107: 569Google Scholar
  109. 109.
    Rullman JAC, van Duijnen PT (1988) Mol Phys 63: 451Google Scholar
  110. 110.
    Mehler EL, Paul CH (1979) Chem Phys Lett 63: 145Google Scholar
  111. 111.
    Pullman A, Pullman B (1981) Quart Rev Biophys 14: 283Google Scholar
  112. 112.
    Pullman A, Perahia D (1978) Theoret Chim Acta 48: 29Google Scholar
  113. 113.
    Bonaccorsi R, Scrocco E, Tomasi J (1976) J Am Chem Soc 98: 4049; ibid 99: 4545Google Scholar
  114. 114.
    Agresti A, Bonaccorsi R, Tomasi J (1979) Theoret Chim Acta 53: 215Google Scholar
  115. 115.
    Lavery R, Etchebest C, Pullman A (1982) Chem Phys Lett 85: 266Google Scholar
  116. 116.
    Etchebest C, Lavery R, Pullman A (1982) Theoret Chim Acta 62: 17Google Scholar
  117. 117.
    Hall GG (1973) Chem Phys Lett 20: 501Google Scholar
  118. 118.
    Stone AJ (1981) Chem Phys Lett 83: 233Google Scholar
  119. 119.
    Stone AJ, Alderton M (1985) Mol Phys 56: 1047Google Scholar
  120. 120.
    Vigné-Maeder F, Claverie P (1988) J Chem Phys 88: 4934Google Scholar
  121. 121.
    Stone AJ, Price SL (1988) J Phys Chem 92: 3325Google Scholar
  122. 122.
    Stone AJ (1989) In: Maksic ZB (ed) Theoretical models of chemical bonding, chap 6. Classical electrostatics in intermolecular interactions vol 4, Springer, Berlin Heidelberg New YorkGoogle Scholar
  123. 123.
    Faerman CH, Price SL (1990) Am Chem Soc 112: 4915Google Scholar
  124. 124.
    Náray-Szabó G (1979) Int J Quantum Chem 16: 265Google Scholar
  125. 125.
    Náray-Szabó G, Grofcsik A, Kósa K, Kubinyi M, Martin A (1981) 2: 58Google Scholar
  126. 126.
    Nagy P, ángyán J, Náray-Szabó G, Peinel G (1987) Int J Quantum Chem 31: 927Google Scholar
  127. 127.
    Seres J, Náray-Szabó G, Simon K, Daróczi-Csuka K, Szilágyi I, Párkányi L (1981) Tetrahedron 37: 1565Google Scholar
  128. 128.
    ösapay K, Náray-Szabó G (1983) J Mol Struct (Theochem) 92: 57Google Scholar
  129. 129.
    Náray-Szabó G (1987) In: Maksić ZB (ed) Modelling of structures and properties of molecules. Ellis Horwood, Chichester, England, p 299Google Scholar
  130. 130.
    Ewald P (1921) Ann Phys 64: 253Google Scholar
  131. 131.
    Catti M (1978) Acta Cryst 34A: 974Google Scholar
  132. 132.
    Cummings PG, Dunmur A, Munn RW, Newham RJ (1976) Acta Cryst 32A: 847Google Scholar
  133. 133.
    ángyán JG, Ferenczy G, Nagy P, Náray-Szabó G (1988) Coll Czech Chem Commun 53: 2308Google Scholar
  134. 134.
    Ferenczy G, ángyán JG, (1990) J Chem Soc Faraday Trans 86: 3461Google Scholar
  135. 135.
    Otto P, Ladik J (1975) Chem Phys 8: 192; (1977) ibid 19: 209Google Scholar
  136. 136.
    Otto P (1978) Chem Phys 33: 407Google Scholar
  137. 137.
    Otto P (1979) Chem Phys Lett 62: 538Google Scholar
  138. 138.
    Förner W, Otto P, Bernhardt J, Ladik J (1981) Theoret Chim Acta 60: 269Google Scholar
  139. 139.
    Otto P (1985) Int J Quantum Chem 28: 895; (1986) ibid 30: 275Google Scholar
  140. 140.
    ángyán JG, Silvi B (1987) J Chem Phys 86: 6957Google Scholar
  141. 141.
    Weinstein H, Eilers JE, Chang SY (1977) Chem Phys Lett 51: 534Google Scholar
  142. 142.
    Klessinger M (1978) Theoret Chim Acta 49: 77Google Scholar
  143. 143.
    Kiessinger M (1988) Int J Quantum Chem 23: 535Google Scholar
  144. 144.
    Longuet-Higgins HC, Murrell JN (1955) Proc Phys Soc (London) Sect A 68: 601Google Scholar
  145. 145.
    Heilbronner E, Weber JP, Michl J, Zahradnik R (1965) Theoret Chim Acta 6: 141Google Scholar
  146. 146.
    Favini G, Gamba A, Simonetta M (1969) Theoret Chim Acta 13: 175Google Scholar
  147. 147.
    Germer HA jr, Becker RS (1972) Theoret Chim Acta 28: 1Google Scholar
  148. 148.
    Fabian J, Scholtz M (1981) Theoret Chim Acta 59: 117Google Scholar
  149. 149.
    von Niessen W (1971) J Chem Phys 55: 1948; (1973) Theoret Chim Acta 31: 111; (1973) ibid 32: 13; (1974) ibid 33: 7Google Scholar
  150. 150.
    Christoffersen RE (1972) Adv Quantum Chem 6: 333Google Scholar
  151. 151.
    Frost AA (1967) J Chem Phys 47: 3707, 3714Google Scholar
  152. 152.
    Gáspár R jr, Gáspár R (1979) Int J Quantum Chem 15: 567; (1979) ibid 16: 57, (1980) ibid 19: 501Google Scholar
  153. 153.
    Gáspár R, Gáspár R jr (1979) Int J Quantum Chem 15: 559Google Scholar
  154. 154.
    O’Shea SF, Santry DF (1975) Theoret Chim Acta 37: 1Google Scholar
  155. 155.
    Santry DP (1975) Theoret Chim Acta 42: 67Google Scholar
  156. 156.
    Pastori Parravicini GP, Resca L (1973) Phys Rev B 8: 3009Google Scholar
  157. 157.
    Ghio C, Scrocco E, Tomasi J (1976) In: Pullman B (ed) Environmental effects of molecular structure and properties, Reidel, Dordrecht, p 329Google Scholar
  158. 158.
    Tsukada M (1980) J Phys Soc Jpn 49: 1183Google Scholar
  159. 159.
    Barandiarán Z, Pueyo L, Gomez-Beltrán F (1983) J Chem Phys 78: 4612 and (1983) ibid 79: 1926Google Scholar
  160. 160.
    Zyss J, Berthier G (1982) J Chem Phys 77: 3635Google Scholar
  161. 161.
    Böhm MC (1982) Chem Phys Lett 89: 126Google Scholar
  162. 162.
    Winter NW, Pitzer RM, Temple DK (1987) J Chem Phys 86: 3549; ibid 87: 2947Google Scholar
  163. 163.
    Vail JM, Pandey R (1986) Mater Res Soc Symp Proc 63: 247Google Scholar
  164. 164.
    Barandiarán Z, Seijo L (1988) J Chem Phys 89: 5739Google Scholar
  165. 165.
    Sanhueza JE, Tapia O, Laidlaw WG, Trsic M (1979) J Chem Phys 70: 3096Google Scholar
  166. 166.
    Surján PR, Ángyán J (1983) Phys Rev A 28: 45Google Scholar
  167. 167.
    Mayer I (1971) Acta Phys Acad Sci Hung 30: 373Google Scholar
  168. 168.
    Harris FE (1968) J Chem Phys 48: 4027Google Scholar
  169. 169.
    Ruedenberg K (1957) J Chem Phys 19: 1433Google Scholar
  170. 170.
    Carbó R, Arnau C (1978) Gazz Chim Ital 108: 71Google Scholar
  171. 171.
    Steinhauser O, Schuster P (1977) Theoret Chim Acta 45: 147; ibid 46: 157Google Scholar
  172. 172.
    Hashimoto M, Santry DP (1978) Theoret Chim Acta 50: 39Google Scholar
  173. 173.
    Fink WH, Banerjee A, Simons J (1983) J Chem Phys 79: 6104Google Scholar
  174. 174.
    Sesé LM, Banon A, Fernandez M (1983) J Mol Struct (Theochem) 92: 231Google Scholar
  175. 175.
    Sesé LM, Fernández M (1983) J Mol Struct (Theochem) 93: 261Google Scholar
  176. 176.
    Sesé LM (1985) J Mol Liquids 30: 185Google Scholar
  177. 177.
    Whitten JL, Pakkanen TA (1980) Phys Rev B 21: 4357Google Scholar
  178. 178.
    Harding JH, Harker AH, Keegstra PB, Pandey R, Vail JM, Woodward C (1985) Physica 131B: 151Google Scholar
  179. 179.
    Schluger AL, Kotomin EA, Kantorovich LN (1986) J Phys C: Solid State Phys 19: 4183Google Scholar
  180. 180.
    Kugler S, Surján PR, Náray-Szabó G (1988) Phys Rev B 37: 9069Google Scholar
  181. 181.
    Pisani C, Dovesi R (1987) Theoret Chim Acta 72: 277Google Scholar
  182. 182.
    Fisher AJ (1987) Theoret Chim Acta 72: 319Google Scholar
  183. 183.
    Baraff GA, Schlüchter M (1986) J Phys C: Solid State Phys 19: 4383Google Scholar
  184. 184.
    Bridet J, Fliszár S, Odiot PS, Pick R (1983) Int J Quantum Chem 24: 687Google Scholar
  185. 185.
    Mix H, Sauer J, Schröder V, Merkel A (1988) Coll Czech Chem Commun 53: 2191Google Scholar
  186. 186.
    Zahradnik R, Hobza P, Sauer J (1982) In: Náray-Szabó G (ed) Steric effects in biomolecules. Akadémiai Kiadó, Elsevier, Budapest, p 327Google Scholar
  187. 187.
    Náray-Szabó G, Kramer G, Nagy P, Kugler S (1987) J Comp Chem 8: 555Google Scholar
  188. 188.
    Noell JO, Morokuma K (1975) Chem Phys Lett 36: 465Google Scholar
  189. 189.
    Noell JO, Morokuma K (1976) J Phys Chem 80: 2675Google Scholar
  190. 190.
    Tapia O, Johannin G (1981) J Chem Phys 75: 3624Google Scholar
  191. 191.
    Kollman PA, Hayes DM (1981) J Am Chem Soc 103: 2955Google Scholar
  192. 192.
    van Duijnen PT, Thole BT, Hol WGJ (1979) Biophys Chem 9: 273Google Scholar
  193. 193.
    Allen LC (1981) Ann NY Acad Sci 367: 383Google Scholar
  194. 194.
    Onsager L (1936) J Am Chem Soc 58: 1486Google Scholar
  195. 195.
    Tapia O, Goscinski O (1975) Mol Phys 29: 1653Google Scholar
  196. 196.
    Klopman G (1968) Chem Phys Lett 1: 200Google Scholar
  197. 197.
    Miertus S, Kysel O (1977) Chem Phys 21: 27Google Scholar
  198. 198.
    Rivail JL, Rinaldi D (1976) Chem Phys 18: 233Google Scholar
  199. 199.
    Constanciel R, Tapia O (1978) Theoret Chim Acta 48: 75Google Scholar
  200. 200.
    Tapia O, Lamborelle C (1979) Chem PhysGoogle Scholar
  201. 201.
    Newton MD (1975) J Phys Chem 79: 2795Google Scholar
  202. 202.
    Hylton J, Christoffersen RE, Hall GG (1974) Chem Phys Lett 24: 501Google Scholar
  203. 203.
    Rinaldi D, Ruiz-Lopez MF, Rivail JL (1983) J Chem Phys 78: 834Google Scholar
  204. 204.
    Miertus, Scrocco E, Tomasi J (1981) Chem Phys 55: 117Google Scholar
  205. 205.
    Mikkelsen KV, Àgren H, Jensenand HJA, Helgaker T (1988) J Chem Phys 89: 3086Google Scholar
  206. 206.
    Tapia O, Sussman F, Poulain E (1978) J Theor Biol 71: 49Google Scholar
  207. 207.
    Longo E, Stamato F, Ferreira R, Tapia O (1985) J Theor Biol 112: 783Google Scholar
  208. 208.
    ángyán J, Allavena M, Picard M, Potier A, Tapia O (1982) J Chem Phys 77: 4723Google Scholar
  209. 209.
    Thole BT (1981) Chem Phys 59: 341Google Scholar
  210. 210.
    Ángyán J, Náray-Szabó G (1983) Theoret Chim Acta 64: 27; (1984) Acta Chim Hung 116: 141Google Scholar
  211. 211.
    Tapia O (1990) In: H Weinstein, G Náray-Szabó (eds) Reports in Molecular Theory, CRC Press, Boca Raton (in press)Google Scholar
  212. 212.
    ángyán JG, in preparationGoogle Scholar
  213. 213.
    Thole BT, van Duijnen PT (1982) Chem Phys 71: 211Google Scholar
  214. 214.
    Rinaldi D, Costa Cabrai BJ, Rivail JL (1986) Chem Phys Lett 125: 495Google Scholar
  215. 215.
    Warshel A, Levitt M (1976) J Mol Biol 103: 227Google Scholar
  216. 216.
    Russell ST, Warshel A (1985) J Mol Biol 185: 389Google Scholar
  217. 217.
    Warshel A, Weiss RM (1980) J Am Chem Soc 102: 6218Google Scholar
  218. 218.
    Warshel A, Russell S (1986) J Am Chem Soc 108: 6569Google Scholar
  219. 219.
    Warshel A, Sussman F (1986) Proc Natl Acad Sci USA 83: 3806Google Scholar
  220. 220.
    Náray-Szabó G, Surján PR (1983) Chem Phys Lett 96: 449Google Scholar
  221. 221.
    Del Re G (1963) Theoret Chim Acta 1: 188Google Scholar
  222. 222.
    Bálint I, Ban MI (1983) Computers and Chem 7: 199Google Scholar
  223. 223.
    Náray-Szabó G, Surján PR, Kiss AI (1985) J Mol Struct (Theochem) 123: 85Google Scholar
  224. 224.
    Allavena M, Seiti K, Kassab E, Ferenczy G, Ángyán JG (1990) Chem Phys Lett 172: 55Google Scholar
  225. 225.
    Dempsey E (1969) J Phys Chem 73: 3660Google Scholar
  226. 226.
    Preuss E, Linden G, Peuckert M (1985) J Phys Chem 89: 2955Google Scholar
  227. 227.
    Lievens J (1987) personal commGoogle Scholar
  228. 228.
    Mortier WJ (1987) Structure and Bonding 66: 125Google Scholar
  229. 229.
    van Genechten KA, Mortier WJ, Geerlings J (1987) J Chem Phys 86: 5063Google Scholar
  230. 230.
    Uytterhoven L, Lievens J, van Genecheten K, Mortier WJ (1987) Preprints of Conference Proceedings in Eberswalde (GDR)Google Scholar
  231. 231.
    Löwenstein W (1954) Am Mineral 39: 92Google Scholar
  232. 232.
    Johannin G, Kellersohn N (1972) Biochem Biophys Res Commun 49: 321Google Scholar
  233. 233.
    Warshel A (1981) Acc Chem Res 14: 281Google Scholar
  234. 234.
    Náray-Szabó G (1988) J Mol Catal 47: 281Google Scholar
  235. 235.
    Kraut J (1977) Annu Rev Biochem 46: 331Google Scholar
  236. 236.
    Polgár L, Halász P (1982) Biochem J 207: 1Google Scholar
  237. 237.
    Schowen RL (1987) In: Liebman JF, Greenberg A (eds) Principles of enzyme activity. VCH Publishers, Dcerfield Beach FL USA, p 1Google Scholar
  238. 238.
    Bernstein FC, Koetzle TF, Williams GJB, Meyer jr EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112: 535Google Scholar
  239. 239.
    Náray-Szabó G, Polgár L (1981) Tnt J Quantum Chem Quantum Biol Symp 7: 397Google Scholar
  240. 240.
    Náray-Szabó G (1982) Int J Quantum Chem 22: 575Google Scholar
  241. 241.
    Náray-Szabó G, Kapur A, Mezey PG, Polgár L (1982) J Mol Struct (Theochem) 90: 137Google Scholar
  242. 242.
    Ángyán J, Náray-Szabó G (1983) J Theor Biol 103: 349Google Scholar
  243. 243.
    Náray-Szabó G (1984) J Am Chem Soc 106: 4584Google Scholar
  244. 244.
    Nagy P, Náray-Szabó G (1985) J Mol Struct (Theochem) 123: 413Google Scholar
  245. 245.
    Náray-Szabó G (1986) J Mol Struct (Theochem) 134: 401Google Scholar
  246. 246.
    Umeyama H, Imamura A, Nagata I, Hanano M (1973) J Theor Biol 41: 485Google Scholar
  247. 247.
    Scheiner S, Kleier DA, Lipscomb WN (1975) Proc Natl Acad Sci USA 72: 2606Google Scholar
  248. 248.
    Náray-Szabó G, Warshel A (1989) In: Kotyk A (ed) Proceedings of the 14th International Congress of Biochemistry. VSP Intl Sci Publ, ZeistGoogle Scholar
  249. 249.
    Umeyama H, Nakagawa S, Kudo T (1981) J Mol Biol 150: 409Google Scholar
  250. 250.
    Wooten F, Winter K, Weaire D (1985) Phys Rev Lett 54: 1392Google Scholar
  251. 251.
    Kramer B, King H, Mackinnon A (1983) J Non-Cryst Solids 59–60: 73Google Scholar
  252. 252.
    Brey L, Tejedor C, Verges A (1984) Phys Rev Lett 52: 1840Google Scholar
  253. 253.
    Ley L, Reichardt J, Johnson RL (1982) Phys Rev Lett 49: 1664Google Scholar
  254. 254.
    Klug DD, Whalley E (1982) Phys Rev B 25: 5543Google Scholar
  255. 255.
    Kugler S, Náray-Szabó G (1987) J Non-Cryst Solids 97–98: 503Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • János G. ángyán
    • 1
  • Gábor Náray-Szabó
    • 1
  1. 1.CHINOIN Pharmaceutical and Chemical WorksBudapestHungary

Personalised recommendations