Outlines of Statistical Mechanics

  • Morikazu Toda
  • Ryogo Kubo
  • Nobuhiko Saitô
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 30)


In this chapter, we start with certain principles and describe the general methods of statistical mechanics [2.1–17]. If we assume that every quantum-mechanical state (microscopic state) has the same weight (the principle of equal probability), then we can establish a standpoint where mechanical laws are combined with probability theory. By considering a system in contact with a larger system, we can describe a system with constant temperature or constant pressure. Thus, we develop the statistical mechanics for an equilibrium state (statistical mechanics in a narrow sense) and we can also find a microscopic interpretation of the laws in thermodynamics.


Entropy Helium Rium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    L.D. Landau, E.M. Lifshitz: Statistical Physics [transl. by D. Shoenberg] (Clarendon, Oxford 1938) Various revised and enlarged editions have been published by Pergamon, OxfordMATHGoogle Scholar
  2. 2.2
    J.E. Mayer, M.G. Mayer: Statistical Mechanics (Wiley, New York 1940)MATHGoogle Scholar
  3. 2.3
    D. terHaar: Elements of Statistical Mechanics (Holt, Rinehart and Winston, New York 1961)Google Scholar
  4. 2.4
    D. terHaar: Elements of Thermostatics (Holt, Rinehart and Winston, New York 1966)Google Scholar
  5. 2.5
    R. Kubo, H. Ichimura, T. Usui, N. Hashitsume: Statistical Mechanics (North-Holland, Amsterdam 1965)MATHGoogle Scholar
  6. 2.6
    C. Kittel: Elementary Statistical Mechanics (Wiley, New York 1958)Google Scholar
  7. 2.7
    R. W. Gurney: Introduction to Statistical Mechanics (McGraw-Hill, New York 1949)MATHGoogle Scholar
  8. 2.8
    G.S. Rushbrooke: Introduction to Statistical Mechanics (Oxford 1951)Google Scholar
  9. 2.9a
    A. Sommerfeld: Thermodynamik und Statistik (Dietrich 1952)MATHGoogle Scholar
  10. 2.9b
    A. Sommerfeld:Thermodynamics and Statistical Mechanics [English transl. by J. Kestin] (Academic, New York 1956)MATHGoogle Scholar
  11. 2.10
    R. Becker: Theorie der Wärme (Springer, Berlin, Heidelberg 1955)MATHGoogle Scholar
  12. 2.11a
    A. Münster: Statistische Thermodynamik (Springer, Berlin, Heidelberg 1956)MATHCrossRefGoogle Scholar
  13. 2.11b
    A. Münster: English transl.: Statistical Thermodynamics (Springer, Berlin, Heidelberg 1969)MATHGoogle Scholar
  14. 2.12
    T.L. Hill: Statistical Mechanics (McGraw-Hill, New York 1956)MATHGoogle Scholar
  15. 2.13
    S. Flügge (ed.): Principles of Thermodynamics and Statics, Encyclopedia of Physics, Vol. 3, Part 2 (Springer, Berlin, Heidelberg 1959)Google Scholar
  16. 2.14
    K. Huang: Statistical Mechanics (Wiley, New York 1963)Google Scholar
  17. 2.15
    F. Reif: Statistical and Thermal Physics (McGraw-Hill, New York 1965)Google Scholar
  18. 2.16
    G.H. Wannier: Statistical Physics (Wiley, New York 1966)MATHGoogle Scholar
  19. 2.17
    A. Isihara: Statistical Mechanics (Academic, New York 1971)Google Scholar
  20. 2.18
    K. Husimi: Proc. Phys.-Math. Soc. Jpn. 22, 246 (1940)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Morikazu Toda
    • 1
  • Ryogo Kubo
  • Nobuhiko Saitô
    • 2
  1. 1.TokyoJapan
  2. 2.Department of Applied PhysicsWaseda UniversityTokyoJapan

Personalised recommendations