Outlines of Statistical Mechanics

  • Morikazu Toda
  • Ryogo Kubo
  • Nobuhiko Saitô
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 30)


In this chapter, we start with certain principles and describe the general methods of statistical mechanics [2.1–17]. If we assume that every quantum-mechanical state (microscopic state) has the same weight (the principle of equal probability), then we can establish a standpoint where mechanical laws are combined with probability theory. By considering a system in contact with a larger system, we can describe a system with constant temperature or constant pressure. Thus, we develop the statistical mechanics for an equilibrium state (statistical mechanics in a narrow sense) and we can also find a microscopic interpretation of the laws in thermodynamics.


Quantum State Density Matrix Statistical Mechanic State Density Canonical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    L.D. Landau, E.M. Lifshitz: Statistical Physics [transl. by D. Shoenberg] (Clarendon, Oxford 1938) Various revised and enlarged editions have been published by Pergamon, OxfordMATHGoogle Scholar
  2. 2.2
    J.E. Mayer, M.G. Mayer: Statistical Mechanics (Wiley, New York 1940)MATHGoogle Scholar
  3. 2.3
    D. terHaar: Elements of Statistical Mechanics (Holt, Rinehart and Winston, New York 1961)Google Scholar
  4. 2.4
    D. terHaar: Elements of Thermostatics (Holt, Rinehart and Winston, New York 1966)Google Scholar
  5. 2.5
    R. Kubo, H. Ichimura, T. Usui, N. Hashitsume: Statistical Mechanics (North-Holland, Amsterdam 1965)MATHGoogle Scholar
  6. 2.6
    C. Kittel: Elementary Statistical Mechanics (Wiley, New York 1958)Google Scholar
  7. 2.7
    R. W. Gurney: Introduction to Statistical Mechanics (McGraw-Hill, New York 1949)MATHGoogle Scholar
  8. 2.8
    G.S. Rushbrooke: Introduction to Statistical Mechanics (Oxford 1951)Google Scholar
  9. 2.9a
    A. Sommerfeld: Thermodynamik und Statistik (Dietrich 1952)MATHGoogle Scholar
  10. 2.9b
    A. Sommerfeld:Thermodynamics and Statistical Mechanics [English transl. by J. Kestin] (Academic, New York 1956)MATHGoogle Scholar
  11. 2.10
    R. Becker: Theorie der Wärme (Springer, Berlin, Heidelberg 1955)MATHGoogle Scholar
  12. 2.11a
    A. Münster: Statistische Thermodynamik (Springer, Berlin, Heidelberg 1956)MATHCrossRefGoogle Scholar
  13. 2.11b
    A. Münster: English transl.: Statistical Thermodynamics (Springer, Berlin, Heidelberg 1969)MATHGoogle Scholar
  14. 2.12
    T.L. Hill: Statistical Mechanics (McGraw-Hill, New York 1956)MATHGoogle Scholar
  15. 2.13
    S. Flügge (ed.): Principles of Thermodynamics and Statics, Encyclopedia of Physics, Vol. 3, Part 2 (Springer, Berlin, Heidelberg 1959)Google Scholar
  16. 2.14
    K. Huang: Statistical Mechanics (Wiley, New York 1963)Google Scholar
  17. 2.15
    F. Reif: Statistical and Thermal Physics (McGraw-Hill, New York 1965)Google Scholar
  18. 2.16
    G.H. Wannier: Statistical Physics (Wiley, New York 1966)MATHGoogle Scholar
  19. 2.17
    A. Isihara: Statistical Mechanics (Academic, New York 1971)Google Scholar
  20. 2.18
    K. Husimi: Proc. Phys.-Math. Soc. Jpn. 22, 246 (1940)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Morikazu Toda
    • 1
  • Ryogo Kubo
  • Nobuhiko Saitô
    • 2
  1. 1.TokyoJapan
  2. 2.Department of Applied PhysicsWaseda UniversityTokyoJapan

Personalised recommendations