A Model of the Acquisition of Object Representations in Human 3D Visual Recognition

  • S. Edelman
  • D. Weinshall
  • H. H. Bülthoff
  • T. Poggio
Part of the NATO ASI Series book series (NATO ASI, volume 102)

Abstract

A common approach to the study of visual recognition postulates that there exist in the visual system representations of familiar objects and scenes. To recognize an object, the system compares it with each of the stored models. Such a comparison would appear possible only after the input image and the stored representations are brought to a common form. Consequently, the nature of representation must be reflected in the performance of the system [7].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. E delman, H. Bülthoff, and D. Weinshall. Stimulus familiarity determines recognition strategy for novel 3D objects. A.I. Memo No. 1138, AI Laboratory, MIT, July 1989.Google Scholar
  2. [2]
    S. Edelman and D. Weinshall. A self-organizing multiple-view representation of 3D objects. A.I. Memo No. 1146, AI Laboratory, MIT, August 1989.Google Scholar
  3. [3]
    P. Jolicoeur. The time to name disoriented objects. Memory and Cognition, 13:289–303, 1985.CrossRefGoogle Scholar
  4. [4]
    A. Koriat and J. Norman. Mental rotation and visual familiarity. Perception and Psychophysics, 37:429–439, 1985.CrossRefGoogle Scholar
  5. [5]
    A. Larsen. Pattern matching: effects of size ratio, angular difference in orientation and familiarity. Perception and Psychophysics, 38:63–68, 1985.CrossRefGoogle Scholar
  6. [6]
    D. G. Lowe. Perceptual organization and visual recognition. Kluwer Academic Publishers, Boston, MA, 1986.Google Scholar
  7. [7]
    D. Marr. Vision. W. H. Freeman, San Francisco, CA, 1982.Google Scholar
  8. [8]
    J. Morton. Interaction of information in word recognition. Psychological Review, 76:165–178, 1969.CrossRefGoogle Scholar
  9. [9]
    S. Palmer, E. Rosch, and P. Chase. Canonical perspective and the perception of objects. In J. Long and A. Baddeley, editors, Attention and Performance IX, pages 135–151. Erlbaum, Hillsdale, NJ, 1981.Google Scholar
  10. [10]
    S. E. Palmer. The psychology of perceptual organization: a transformational approach. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and machine vision, pages 269–340. Academic Press, New York, 1983.CrossRefGoogle Scholar
  11. [11]
    R. Ratcliff. Parallel processing mechanisms and processing of organized information in human memory. In J. A. Anderson and G. E. Hinton, editors, Parallel models of associative memory. Erlbaum, Hillsdale, NJ, 1981.Google Scholar
  12. [12]
    I. Rock and J. DiVita. A case of viewer-centered object perception. Cognitive Psychology, 19:280–293, 1987.CrossRefGoogle Scholar
  13. [13]
    I. Rock, D. Wheeler, and L. Tudor. Can we imagine how objects look from other viewpoints? Cognitive Psychology, 21:185–210, 1989.CrossRefGoogle Scholar
  14. [14]
    R. N. Shepard and L. A. Cooper. Mental images and their transformations. MIT Press, Cambridge, MA, 1982.Google Scholar
  15. [15]
    R. N. Shepard and J. Metzler. Mental rotation of three-dimensional objects. Science, 171:701–703, 1971.CrossRefGoogle Scholar
  16. [16]
    S. Shepard and D. Metzler. Mental rotation: effects of dimensionality of objects and type of task. J. Exp. Psychol.: Human Perception and Performance, 14:3–11, 1988.Google Scholar
  17. [17]
    M. Tarr and S. Pinker. Mental rotation and orientation-dependence in shape recognition. Cognitive Psychology, 21, 1989.Google Scholar
  18. [18]
    S. Ullman. Aligning pictorial descriptions: an approach to object recognition. Cognition, 32:193–254, 1989.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • S. Edelman
    • 1
  • D. Weinshall
    • 1
  • H. H. Bülthoff
    • 1
  • T. Poggio
    • 1
  1. 1.Center for Biological Information ProcessingCambridgeUSA

Personalised recommendations