Design Strategies For Gas And Odour Sensors Which Mimic The Olfactory System

  • Krishna C. Persaud
  • Jon Bartlett
  • Paolo Pelosi
Part of the NATO ASI Series book series (NATO ASI, volume 102)


The methods of detection, identification and measurement of concentrations of gases and odours have been under constant development for the last three decades. However, the numerous patents for new gas sensors appearing every year indicate that the state of the art is still not very satisfactory. For detection of individual gases and odours of industrial interest the following methods are widely used.


Olfactory Bulb Olfactory Receptor Olfactory Epithelium Olfactory System Sensor Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H, Kanaya, S. Takahashi, Y and Sasaki, S. (1988) Extended studies of the automated odor-sensing system based on plural semiconductor gas sensors with computerized pattern recognition techniques. Anal. Chim. Acta 215, 155–168.CrossRefGoogle Scholar
  2. Amoore, J.E. (1967) Specific anosmia: A clue to the olfactory code. Nature, 214, 1095–1098.CrossRefGoogle Scholar
  3. Amoore, J.E. (1971) Stereochemical andvibrational theories of odour. Nature, 233, 270–271.CrossRefGoogle Scholar
  4. Bartlett, P.N, Archer P.B.M and Ling-Chung, S.K. (1989) Conducting polymer gas sensors. Part I: fabrication and characterisation. Sensors and Actuators 19, 125–140.CrossRefGoogle Scholar
  5. Bartlett, P.N and Ling-Chung, S.K. (1989) Conducting polymer gas sensors. Part II: resonse of polypyrrole to methanol vapour. Sensors and Actuators 19, 141–150.CrossRefGoogle Scholar
  6. Cheung, K.M, Bloor, D and Stevens, G.C. (1988) Characterisation of polypyrrole electro-polymerised on different electrodes. Polymer, 29, 1709–1717.CrossRefGoogle Scholar
  7. Deutsch, S. (1967) Models of the Nervous System. John Wiley, New York.Google Scholar
  8. Diaz, A.F, Kanazawa, K.K and Gardini, G.P. (1979) Electrochemical polymerisation of pyrrole. J.Chem. Commun. 635–636.Google Scholar
  9. Diaz, A.F, Rubinson, J.F, and Mark, H.B. Jr. (1988) In: Electronic Applications, Springer-Verlag, Berlin, pp. 113–140.CrossRefGoogle Scholar
  10. Dall’Olio, A, Dascola, V, Varacca, V and Bocche, V. (1968) Electron paramagnetic resonance and conductivity of an electrolytic oxypyrrole (pyrrole polymer) black. Compte rend. l’Acad. Sci. (Paris), C267, 433.Google Scholar
  11. Dravnieks, A. and Trotter, P.J. (1965) Polar vapour detection based on thermal modulation of contact potential. J. Sci. Instruments 1, 102–119.Google Scholar
  12. Getchell, T.V. (1986) Functional properties of olfactory receptor neurons Physiol. Rev. 66, 772–818.Google Scholar
  13. Hanawa, T, Susumu, K and Yoneyama, H. (1988) Gas sensitivity of polypyrrole films to NO2. J. Chem. Soc. Faraday Trans. 84, 1587–1592.CrossRefGoogle Scholar
  14. Herberhold, C. (1969) Adsorption von Geruchsubstanzen auf Thermistoren In: Verhandlungen der Deutschen Gesellschaft ftr Hals-Nasen-Ohren-Heilkunde, Kopf-und-Hals-Chirugie auf der XL. Jahrsversammiung (ed. H.H. Neumann) Springer-Verlag Berlin.Google Scholar
  15. Lancet, D. (1986) Vertebrate Olfactory Reception Ann. Rev. Neurosci. 9, 329–355CrossRefGoogle Scholar
  16. Miasik, J.J, Hooper, A and Tofield, B.C. (1986) Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. 82, 1117–1126.CrossRefGoogle Scholar
  17. McClelland, J.L, Rumelhart, D.E. and the PDP research group (1986) Parallel Distributed Processing: Explorations in the microstructure of cognition. Vol.2: Psychological and Biological Models. MIT Press. Cambridge, Mass.Google Scholar
  18. Muhammadi, A, Lundström, I, Salaneck, W.R.and Inganas, O. (1987) Polypyrrole prepared by chemical vapour phase deposition using hydrogen peroxide and hydrochloric acid. Synth. Met 21, 169–173.CrossRefGoogle Scholar
  19. Nylander, C, Armgarth, M. and Lundström, I. (1983) An ammonia sensor based on a conducting polymer. Anal. Chem. Symp. Series 17, 203–207.Google Scholar
  20. Ogasawa, M, Funahashi, K, Demura, T, Hagiwara, T.and Iwata, K. (1986) Enhancement of electrical conductivity of polypyrrole by stretching Synth. Met. 14, 61–69.Google Scholar
  21. Persaud, K. and Dodd, G. (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299, 352–355.CrossRefGoogle Scholar
  22. Persaud, K.C. and Pelosi, P. (1985) An approach to an artificial nose. Trans. Am. Soc. Artif. Organs. 31, 297–300.Google Scholar
  23. Pelosi, P. and Persaud, K.C. (1988) Gas Sensors: Towards an artificial nose. In: Sensors and sensory systems for advanced robots (ed. Dario, P.) NATO ASI Series: Series F: Computer and Systems Science, Springer-Verlag, Berlin, pp. 361–382.CrossRefGoogle Scholar
  24. Scott, J.C, Pfluger, P, Clarke, T.C. and Street, G.B. (1982) Electron spin resonance and carbon-13-NMR studies of polypyrrole. Polym. Prepr. 23, 119.Google Scholar
  25. Street, G.B, Clarke, T.C, Krounbi, M.T, Kanazawa, K.K, Lee, V.Y, Pfluger, P, Scott, J.C. and Weiser, G. (1982) Preparation and characterization of neutral and oxidised polypyrrole films. Mol. Cryst. Liq. Cryst. 83, 1285–1296.CrossRefGoogle Scholar
  26. Tanyolac, N.N, (1968) Theories of odor and odor measurement (Robert College Res. Center, Istanbul, Turkey).Google Scholar
  27. Woolridge, D.E. (1979) Sensory Processing in the Brain: An Exercise in Neuroconnective Modelling. John Wiley, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Krishna C. Persaud
    • 1
  • Jon Bartlett
    • 1
  • Paolo Pelosi
    • 1
  1. 1.Department of Instrumentation and Analytical ScienceUMISTManchesterUK

Personalised recommendations