How Fast Can a Legged Robot Run?

  • Jeff Koechling
  • H. Marc
Part of the NATO ASI Series book series (NATO ASI, volume 102)


Several parameters can limit the running speed of a legged system. Among them are the strength, length, and stiffness of the legs, the range of joint motion, and the actuator force-velocity characteristics. We have explored how varying these parameters affects top running speed. We developed a dependency tree that suggests that a robot should have long, strong, stiff legs, and actuators with high peak velocity in order to run fast. We have also proposed three ways to improve the control of body attitude in high speed running: keeping hip motions symmetric, compensating for actuator characteristics, and accelerating the hip joint in anticipation of touchdown. In laboratory experiments a planar two-legged robot has reached a top speed of 5.9 m/s (13 mph).


Running Locomotion Speed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. McN. Alexander, V. A. Langman, and A. S. Jayes. 1977. Fast locomotion of some African ungulates. J. Zoology, (London) 183:291–300.CrossRefGoogle Scholar
  2. R. McN. Alexander and A. Vernon. 1975. The mechanics of hopping by kangaroos (Macropodidas). J. Zoology (London) 177:265–303.CrossRefGoogle Scholar
  3. R. McN. Alexander. 1988. Elastic Mechanisms in Animal Movement Cambridge: Cambridge University Press.Google Scholar
  4. T. J. Dawson and C. R. Taylor. 1973. Energetic cost of locomotion in kangaroos. Nature 246:313–314.CrossRefGoogle Scholar
  5. J. Furusho, M. Masubuchi. 1987. Control of a dynamical biped locomotion system for steady walking. In H. Miura, I. Shimoyama, editors, Study on Mechanisms and Control of Bipeds, Tokyo: University of Tokyo, 116–127.Google Scholar
  6. G. Gabrielli and T. H. von Kármán. 1950. What price speed? Mechanical Engineering 72:775–781.Google Scholar
  7. V. S. Gurfinkel, E. V. Gurfinkel, A. Yu. Shneider, E. A. Devjanin, A. V. Lensky, L. G. Shitilman. 1981. Walking robot with supervisory control. Mechanism and Machine Theory 16:31–36.CrossRefGoogle Scholar
  8. A. V. Hill. 1950. The dimensions of animals and their muscular dynamics. Science Progress 38:209–230.Google Scholar
  9. S. Hirose. 1984. A study of design and control of a quadruped walking vehicle. International J. Robotics Research 3:113–133.CrossRefGoogle Scholar
  10. D. F. Hoyt and C. R. Taylor. 1981. Gait and the energetics of locomotion in horses. Nature 292:239–240.CrossRefGoogle Scholar
  11. M. Huang and K. J. Waldron. 1987. Relationship between payload and speed in legged locomotion. In Proceedings of Conference on Robotics and Automation, IEEE, Raleigh, NC. 533–538.Google Scholar
  12. T. Kato, A. Takanishi, H. Jishikawa, I. Kato. 1983. The realization of the quasidynamic walking by the biped walking machine. In A. Morecki, G. Bianchi, K. Kedzior, editors, Theory and Practice of Robots and Manipulators, Proceedings of RoManSy’81, Warsaw: Polish Scientific Publishers. 341–351.Google Scholar
  13. T. A. McMahon. 1975. Using body size to understand the structural design of animals: quadrupedal locomotion. J. Appl. Physiol. 39:619–627.Google Scholar
  14. T. A. McMahon and P. R. Greene. 1978. Fast running tracks. Scientific American 239:148–163.CrossRefGoogle Scholar
  15. T. A. McMahon and P. R. Greene. 1979. The influence of track compliance on running. J. Biomechanics 12:893–904.CrossRefGoogle Scholar
  16. T. A. McMahon. 1985. The role of compliance in mammalian running gaits. J. Exp. Biol 115:263–282.Google Scholar
  17. T. A. McMahon, G. Valiant, and E. C. Frederick. 1986. Groucho running. J. Appl. Physiol. 62:2326–2337.Google Scholar
  18. H. Miura, I. Shimoyama. 1984. Dynamic walk of a biped. International J. Robotics Research 3:60–74.CrossRefGoogle Scholar
  19. M. H. Raibert. 1986. Legged Robots That Balance. MIT Press.Google Scholar
  20. I. E. Sutherland, M. K. Ullner. 1984. Footprints in the asphalt. International J. Robotics Research 3:29–36.CrossRefGoogle Scholar
  21. M. Russel. 1983. ODEX I: The first functionoid. Robotic Age. 5(5):12–18.Google Scholar
  22. C. R. Taylor, N. C. Heglund, and G. M. O. Maloiy. 1982. Energetics and mechanics of terrestrial locomotion: I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. exp Biol. 97:1–21.Google Scholar
  23. K. J. Waldron, V. J. Vohnout, A. Pery, and R. B. McGhee. 1984. Configuration design of the adaptive suspension vehicle. International J. Robotics Research 3:37–48.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Jeff Koechling
    • 2
  • H. Marc
    • 1
  1. 1.Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations