Backwards Analysis of Randomized Geometric Algorithms

  • Raimund Seidel
Part of the Algorithms and Combinatorics book series (AC, volume 10)


The theme of this chapter is a rather simple method that has proved very potent in the analysis of the expected performance of various randomized algorithms and data structures in computational geometry. The method can be described as “analyze a randomized algorithm as if it were running backwards in time, from output to input.” We apply this type of analysis to a variety of algorithms, old and new, and obtain solutions with optimal or near optimal expected performance for a plethora of problems in computational geometry, such as computing Delaunay triangulations of convex polygons, computing convex hulls of point sets in the plane or in higher dimensions, sorting, intersecting line segments, linear programming with a fixed number of variables, and others.


Convex Hull Voronoi Diagram Computational Geometry Delaunay Triangulation Convex Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl: Euclidean min­imum spanning trees and bichromatic closest pairs. Proc. 6th ACM Symp. on Computational Geometry 1990, pp. 203–210Google Scholar
  2. 2.
    A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor: A Linear time algorithm for computing the Voronoi diagram of a convex polygon. Proc. 19th ACM Symp. on Theory of Computing 1987, pp. 39–47Google Scholar
  3. 3.
    F. Aurenhammer: Voronoi diagrams — A survey. To appear in ACM Computing SurveysGoogle Scholar
  4. 4.
    D. Avis and H. ElGindy: Triangulating simplicial point sets in space. Proc. 2nd ACM Symp. on Computational Geometry 1986, pp. 133–141Google Scholar
  5. 5.
    J.L. Bentley and T.A. Ottmann: Algorithms for reporting and counting geo­metric intersections. IEEE Transactions on Computers 28 (1979) 643–647MATHCrossRefGoogle Scholar
  6. 6.
    J.L. Bentley and M.I. Shamos: Divide-and-conquer for linear expected time. Information Processing Letters 7 (1978) 87–91MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    J.D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec: Appli­cations of random sampling to on-line algorithms in Computational Geometry. INRIA Tech. Report 1285 (1990)Google Scholar
  8. 8.
    J.D. Boissonnat, O. Devillers, and M. Teillaud: A randomized incremental al­gorithm for constructing higher order Voronoi diagrams. To appear in Algo­rithmicaGoogle Scholar
  9. 9.
    J.D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec: On-line algorithms with good expected behaviours. Manuscript (1991)Google Scholar
  10. 10.
    B. Chazelle: Reporting and counting segment intersections. J. Computer Sys­tem Science 32 (1986) 156–182MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    B. Chazelle and H. Edelsbrunner: An optimal algorithm for intersecting line segments in the plane. Proc. 29th IEEE Symp. on Foundations of Computer Science 1988, pp. 590–600Google Scholar
  12. 12.
    B. Chazelle, H. Edelsbrunner, L.J. Guibas, and M. Sharir: Computing a face in an arrangement of line segments. Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms 1991, pp. 441–448Google Scholar
  13. 13.
    B. Chazelle, L.J. Guibas, and D.T. Lee: The power of geometric duality. BIT 25 (1985) 76–90MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    P. Chew: Building Voronoi diagrams for convex polygons in linear expected time. Manuscript (1986)Google Scholar
  15. 15.
    K.L. Clarkson: A probabilistic algorithm for the post office problem. Proc. 17th ACM Symp. on Theory of Computing (1985), pp. 175–184Google Scholar
  16. 16.
    K.L. Clarkson: New applications of random sampling in computational geom­etry. Discrete & Computational Geometry 2 (1987) 195–222MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    K.L. Clarkson and P.W. Shor: Algorithms for diametral pairs and convex hulls that are optimal, randomized, and incremental. Proc. 4th ACM Symp. on Com­putational Geometry (1988), pp. 12–17Google Scholar
  18. 18.
    K.L. Clarkson and P.W. Shor: Applications of random sampling in computa­tional geometry, II. Discrete & Computational Geometry 4 (1989) 387–421MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    K.L. Clarkson: Linear programming in O(n3d2) time. Inf. Proc. Letters 22 (1986) 21–24MathSciNetCrossRefGoogle Scholar
  20. 20.
    K.L. Clarkson: A Las Vegas algorithm for linear and integer programming when the dimension is small. Manuscript; a preliminary version appeared in Proc. 29th IEEE Symp. on Foundations of Computer Science (1988), pp. 452–456Google Scholar
  21. 21.
    K.L. Clarkson: Personal Communication, September 10 (1990)Google Scholar
  22. 22.
    M.E. Dyer: Linear algorithms for two and three-variable linear programs. SIAM J. on Computing 13 (1984) 31–45MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    M.E. Dyer: On a multidimensional search technique and its applications to the Euclidean one-centre problem. SIAM J. on Computing 15 (1986) 725–738MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    M.E. Dyer and A.M. Friez: A randomized algorithm for fixed-dimensional linear programming. Mathematical Programming 44 (1989) 203–212MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    H. Edelsbrunner: Algorithms in combinatorial geometry. Springer, Berlin Hei­delberg New York 1987MATHGoogle Scholar
  26. 26.
    H. Edelsbrunner, F.P. Preparata, and D.B. West: Tetrahedrizing point sets in three dimensions. Tech. Rep. UIUCDCS-R-86–1310, Univ. of Illinois, Dept. Computer Science (1986)Google Scholar
  27. 27.
    H. Edelsbrunner, J. O’Rourke, and R. Seidel: Constructing arrangements of hyperplanes and applications. SIAM J. on Computing 15 (1986) 341–363MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    G.H. Gonnet. Handbook of algorithms and data structures. Addison-Wesley, 1984MATHGoogle Scholar
  29. 29.
    R.L. Graham: An efficient algorithm for determining the convex hull of a finite planar set. Inform. Proc. Lett. 1 (1972) 132–133MATHCrossRefGoogle Scholar
  30. 30.
    L.J. Guibas, D.E. Knuth, and M. Sharir: Randomized incremental construction of Delaunay and Voronoi diagrams. Proc. ICALP (1990)Google Scholar
  31. 31.
    T. Hagerup and C. Rüb: A guided tour of Chernoff bounds. Inform. Proc. Letters 33 (1989/90) 305–308CrossRefGoogle Scholar
  32. 32.
    D. Haussler and E. Welzl: Epsilon-nets and simplex range queries. Discrete & Computational Geometry 2 (1987) 127–151MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    C.A.R. Hoare: Quicksort. Computer Journal 5.1 (1962) 10–15MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    R.M. Karp: An introduction to randomized algorithms. To appear in Discr. Appl. Math.Google Scholar
  35. 35.
    D.G. Kirkpatrick, R. Seidel: The ultimate planar convex hull algorithm? SIAM J. on Comput. 15, no. 1 (1986) 287–299MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    R. Klein: Concrete and abstract Voronoi diagrams. Springer, Lecture Notes in Computer Science 400 (1989)Google Scholar
  37. 37.
    J. Matoušek and R. Seidel: On tail estimates for Mulmuley’s segment intersec­tion algorithm. In preparationGoogle Scholar
  38. 38.
    J. Matoušek, M. Sharir, and E. Welzl: A subexponential bound for linear pro­gramming. To appear in Proc. of 8th ACM Symp. on Computational Geometry (1992)Google Scholar
  39. 39.
    N. Megiddo: Linear-time algorithms for linear programming in 1R3 and related problems. SIAM J. on Computing 12 (1983) 759–776MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    N. Megiddo: Linear programming in linear time when the dimension is fixed. Journal of the ACM 31 (1984) 114–127MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    K. Mehlhorn: Personal Communication, October (1990)Google Scholar
  42. 42.
    K. Mulmuley: A fast planar partition algorithm: Part I. Proc. 29th IEEE Symp. on Foundations of Computer Science (1988), pp. 580–589Google Scholar
  43. 43.
    K. Mulmuley: A fast planar partition algorithm: Part II. Proc. 5th ACM Symp. on Computational Geometry (1989), pp. 33–43Google Scholar
  44. 44.
    K. Mulmuley: On obstructions in relation to a fixed viewpoint. Proc. 30th IEEE Symp. on Foundations of Computer Science (1989), pp. 592–597Google Scholar
  45. 45.
    F.P. Preparata and M.I. Shamos: Computational geometry — An introduction. Springer, Berlin Heidelberg New York 1985Google Scholar
  46. 46.
    M.O. Rabin: Probabilistic algorithms. In: J.F. Traub, ed., Algorithms and Com­plexity, Recent Results and New Dierections. Academic Press, New York (1976), pp. 21–39Google Scholar
  47. 47.
    P. Raghavan: Lecture notes on randomized algorithms. IBM T.J. Watson Re­search Center Computer Science Report RC 15430 (1990)Google Scholar
  48. 48.
    G. Rote: Personal communication. October 15 (1990)Google Scholar
  49. 49.
    R. Sedgewick: Quicksort. Garland, New York (1978)Google Scholar
  50. 50.
    R. Seidel: Linear programming and convex hulls made easy. Proc. 6th ACM Symp. on Computational Geometry (1990), pp. 211–215Google Scholar
  51. 51.
    R. Seidel: A simple and fast incremental algorithm for computing trapezoidal decompositions and for triangulating polygons. To appear in Computational Geometry: Theory and applications (1991)Google Scholar
  52. 52.
    M.I. Shamos: Computational geometry. Ph.D. thesis, Dept. of Computer Sci­ence, Yale Univ. (1978)Google Scholar
  53. 53.
    M.I. Shamos and D. Hoey: Closest point problems. Proc. 16th IEEE Symp. on Foundations of Computer Science (1975), pp. 151–162Google Scholar
  54. 54.
    M. Sharir and E. Welzl: A combinatorial bound for linear programming and re­lated problems. Proc. of 9th Symp. on theoretical Aspects of Computer Science (STACS 1992)Google Scholar
  55. 55.
    J.S. Vitter and Ph. Flajolet: Average-case analysis of algorithms and data struc­tures. In: J. van Leeuwen, ed, Handbook of theoretical computer science: algo­rithms and complexity. Elsevier (1990), pp. 431–524Google Scholar
  56. 56.
    E. Welzl: Smallest enclosing disks (balls and ellipsoids). In: H. Maurer, ed., New results and new trends in computer science. Springer Lecture Notes in Computer Science 555 (1991) 359–370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Raimund Seidel

There are no affiliations available

Personalised recommendations