Scaling from Species to Vegetation: The Usefulness of Functional Groups

  • Ch. Körner
Part of the Praktische Zahnmedizin Odonto-Stomatologie Pratique Practical Dental Medicine book series (SSE, volume 99)


The major constraints in predicting vegetation responses to atmospheric changes are the complexity of interactions between plants and their biotic and abiotic environment. Unless we decide to wait and see what the truth will be, we are left with the need to simulate future vegetation responses. This can be done both experimentally and by computer models. Experimental simulations are limited in space and time and can, at best, reveal transitional response characteristics and trends. Models, on the other hand, are not space and time limited but depend totally on accurate parameterization. This causes them to be dependent on experimentation which provides real data.


Leaf Area Ratio Leaf Life Span Carbohydrate Accumulation Physiological Plant Ecology Leaf Weight Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angus JF, Wilson JH (1976) Photosynthesis of barley and wheat leaves in relation to canopy models. Photosynthetica 10: 367–377Google Scholar
  2. Begon M, Harper JL, Townsend CR (1986) Ecology. Individuals, populations and communities. Blackwell, OxfordGoogle Scholar
  3. Bowen GD (1984) Tree roots and the use of soil nutrients. In: Bowen GD, Nambiar EKS (eds) Nutrition of plantation forests. Academic Press, London, pp 147–179Google Scholar
  4. Carpenter SB, Smith ND (1981) A comparative study of leaf thickness among southern Appalachian hardwoods. Can J Bot 59: 1393–1396CrossRefGoogle Scholar
  5. Cernusca A (1976) Energy exchange within individual layers of a meadow. Oecologia 23: 141–149CrossRefGoogle Scholar
  6. Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13: 229–259CrossRefGoogle Scholar
  7. Cowan IR (1986) Economics of carbon fixation in higher plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 133–170Google Scholar
  8. Davis SD, Mooney HA (1985) Comparative water relations of adjacent California shrub and grassland communities. Oecologia 66: 522–529CrossRefGoogle Scholar
  9. Davis SD, Mooney HA (1986) Water use patterns of four co-occurring chaparral shrubs. Oecologia 70: 172–177CrossRefGoogle Scholar
  10. De Wit CT (1978) Simulation of assimilation, respiration and transpiration of crops. Centre Agric Publ and Documentation, WageningenGoogle Scholar
  11. Diemer M, Körner Ch, Prock S (1992) Leaf life spans in wild perennial herbaceous plants: a survey and attempts at a functional interpretation. Oecologia 89: 10–16CrossRefGoogle Scholar
  12. Ellenberg H (1973) Ö; kosystemforschung. Springer, Berlin Heidelberg New York, pp 175–194Google Scholar
  13. Ellenberg H (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Scr Geobot 9: 55–97Google Scholar
  14. Ellenberg H, Mayer R, Schauermann J (1986) Ö; kosystemforschung — Ergebnisse des Sollingprojekts 1966-1986. Ulmer, StuttgartGoogle Scholar
  15. Eriksson O, Inghe O, Jerling L, Tapper PG, Telenius A, Torstensson P (1983) A note on non-adaptation hypotheses in plant ecology. Oikos 41: 155–156CrossRefGoogle Scholar
  16. Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 87–107Google Scholar
  17. Garnier E (1991) Resource capture, biomass allocation and growth in herbaceous plants. Tree 6: 126–131PubMedGoogle Scholar
  18. Gause GF (1934) The struggle for existence. Williams & Wilkins, BaltimoreCrossRefGoogle Scholar
  19. Givnish TJ (1986) Introduction. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 1–9Google Scholar
  20. Givnish TJ (1988) Adaptation to sun and shade: a whole plant perspective. Aust J Plant Physiol 15: 63–92CrossRefGoogle Scholar
  21. Goebel K (1913) Organographie der Pflanze, part 1, 2nd edn. Fischer, JenaGoogle Scholar
  22. Goldberg DE, Werner PA (1983) Equivalence of competitors in plant communities: a null hypothesis and a field experimental approach. Am J Bot 70: 1098–1104CrossRefGoogle Scholar
  23. Goudriaan J (1986) Simulation of ecosystem response to rising CO2, with special attention to interfacing with the atmosphere. In: Rosenzweig C, Dickinson R (eds) Climate-vegetation interactions. Proc Workshop NASA, Goddard Space Flight Center, Maryland, 27-29 Jan 1986. UCAR Rep., Boulder, Colorado, pp 49–53Google Scholar
  24. Grace JB (1990) On the relationship between plant traits and competitive ability. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 51–65Google Scholar
  25. Graetz RD (1991) The nature and significance of the feedback of changes in terrestrial vegetation on global atmospheric and climatic change. Clim Change 18: 147–173CrossRefGoogle Scholar
  26. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111: 1169–1194CrossRefGoogle Scholar
  27. Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. Unwin Hyman, LondonGoogle Scholar
  28. Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52: 107–145CrossRefGoogle Scholar
  29. Grulke NE, Riechers GH, Oechel WC, Hjelm U, Jaeger C (1990) Carbon balance in tussock tundra under ambient and elevated atmospheric CO2. Oecologia 83: 485–494CrossRefGoogle Scholar
  30. Halloy S (1990) A morphological classification of plants, with special reference to the New Zealand alpine flora. J Veg Sci 1: 291–304CrossRefGoogle Scholar
  31. Harper JL (1982) After description. In: Newman EI (ed) The plant community as a working mechanism. Blackwell, Oxford, pp 11–25Google Scholar
  32. Harper JL (1989) Canopies as populations. In: Russell G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form and function. Soc Exp Biol Semin Ser 31: 105–128Google Scholar
  33. Hilbert DW (1987) A model of life history strategies of chaparral shrubs in relation to fire frequency. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress. Functional analysis in mediterranean ecosystems. (Ecol Sci 15, Ser G) Springer, Berlin Heidelberg New York, pp 279–304Google Scholar
  34. Hirose T, Werger MJA, VanReenen JWA (1989) Canopy development and leaf nitrogen distribution in a stand of Carex acutiformis. Ecology 70: 1610–1618CrossRefGoogle Scholar
  35. Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15: 1–49CrossRefGoogle Scholar
  36. Jelmini G, Nösberger J (1978) Einfluss der Lichtintensität auf die Ertragsbildung und den Gehalt an nichtstrukturbildenden Kohlenhydraten und Stickstoff von Festuca pratensis Huds., Lolium multiflonim Lam., Trifolium pratense L., und Trifolium repens L. Z Acker-Pflanzenb 146: 154–163Google Scholar
  37. Keddy PA, MacLellan P (1990) Centrifugal organization in forests. Oikos 59: 75–84CrossRefGoogle Scholar
  38. Kinzel H (1983) Influence of limestone, silicates and soil pH on vegetation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology 12: physiological plant ecology III. Springer, Berlin Heidelberg New York, pp 201–244CrossRefGoogle Scholar
  39. Kira T, Yoda K (1989) Vertical stratification in microclimate. In: Lieth H, Werger MJA (eds) Tropical rain forest ecosystems. Elsevier, Amsterdam, pp 55–71Google Scholar
  40. Körner Ch (1985) Humidity responses in forest trees: precautions in thermal scanning surveys. Arch Meteorol Geophys Bioclimatol Ser B 36: 83–98CrossRefGoogle Scholar
  41. Körner Ch (1991) Some often overlooked plant characteristics as determinants of plant growth: a reconsideration. Funct Ecol 5: 162–173CrossRefGoogle Scholar
  42. Körner Ch (1992) CO2 fertilization: the great uncertainty in future vegetation development. In: Shugart H, Solomon A (eds) Vegetation dynamics and global change. Chapman and Hall, London (in press)Google Scholar
  43. Körner Ch (1993) Biomass fractionation in plants — a reconsideration of definitions based on plant functions. In: Garnier E, Roy J (eds) Carbon-nitrogen interactions — a whole plant perspective. SPB Academic, The Hague (in press)Google Scholar
  44. Körner Ch, Arnone J III (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257: 1672–1675PubMedCrossRefGoogle Scholar
  45. Körner Ch, Larcher W (1988) Plant life in cold climates. In: Long SF, Woodward FI (eds) Plants and temperature. Symp Soc Exp Biol 42: 25–57Google Scholar
  46. Körner Ch, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13: 45–82Google Scholar
  47. Kuroiwa S (1978) Radiation environment and photosynthesis in plant stands with different foliage angles. In: Monsi M, Saeki T (eds) JIBP synthesis 19. University Tokyo Press, Tokyo, pp 112–123Google Scholar
  48. Larcher W (1963) Die Leistungsfähigkeit der CO2-Assimilation höherer Pflanzen unter Laboratoriumsbedingungen und am natürlichen Standort. Mitt Florist-Soziol Arbeitsgem N.F. 10: 20–33Google Scholar
  49. Larcher W (1969) The effect of environmental and physiological variables on the carbon dioxide gas exchange of trees. Photosynthetics 3: 167–198Google Scholar
  50. Larcher W (1977) Ergebnisse des IBP-Projekts “Zwergstrauchheide Patscherkofel”. Sitzungsber Österr Akad Wiss, Math-Naturwiss KI, Abt I 186: 301–371Google Scholar
  51. Larcher W (1980) Klimastress im Gebirge — Adaptationstraining und Selektionsfilter für Pflanzen. Rheinisch-Westfäl Akad Wiss Vortr N 291: 49–88Google Scholar
  52. Larcher W, Thomaser-Thin W (1988) Seasonal changes in energy content and storage patterns of mediterranean sclerophylls in a northernmost habitat. Oecol Plant 9: 271–283Google Scholar
  53. Lee DW, Graham R (1986) Leaf optical properties of rainforest sun and extreme shade plants. Am J Bot 73: 1100–1108CrossRefGoogle Scholar
  54. Lee DW, Bone RA, Tarsis SL, Storch D (1990) Correlates of leaf optical properties in tropical forest sun and extreme-shade plants. Am J Bot 77: 370–380CrossRefGoogle Scholar
  55. Lewis MC (1972) The physiological significance of variation in leaf structure. Sci Prog Oxf 60: 25–51Google Scholar
  56. McNaughton KG, Jarvis PG (1991) Effects of spatial scale on stomatal control of transpiration. Agric For Meteorol 54: 279–301CrossRefGoogle Scholar
  57. Monsi M (1960) Dry matter reproduction in plants 1. Schemata of dry matter reproduction. Bot Mag Tokyo 73: 81–90Google Scholar
  58. Mooney HA (1990) Address of the past president: toward the study of the earth’s metabolism. Bull Ecol Soc Am 71: 221–228Google Scholar
  59. Mooney HA (1991) Emergence of the study of global ecology: is terrestrial ecology an impediment to progress? Ecol Applic 1:2–5CrossRefGoogle Scholar
  60. Napp-Zinn K (1984) Anatomie des Blattes. II. Blattanatomie der Angiospermen. B. Experimentelle und ökologische Anatomie des Angiospermenblattes. In: Braun HJ, Carlqvist S, Ozenda P, Roth I (eds) Handbuch der Pflanzenanatomie, vol 8, part 2B, Liefg 1. Borntraeger, BerlinGoogle Scholar
  61. Odum HT, Pigeon RF (eds) (1970) A tropical rain forest. A study of irradiation and ecology at El Verde, Puerto Rico. Office of Information Services, U.S. Atomic Energy Commission, 103ppGoogle Scholar
  62. Oikawa T (1990) Modelling primary production of plant communities. Physiol Ecol Jpn 27: 63–80Google Scholar
  63. O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. (Monographs in Popul Biol 23) Princeton University Press, PrincetonGoogle Scholar
  64. Pisek A (1956) Der Wasserhaushalt der Meso-und Hygrophyten. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 3. Springer, Berlin Göttingen Heidelberg, pp 825–853Google Scholar
  65. Pisek A, Cartellieri E (1932) Zur Kenntnis des Wasserhaushaltes der Pflanzen. II. Schattenpflanzen. Jb Wiss Bot 75: 643–678Google Scholar
  66. Pisek A, Larcher W, Moser W, Pack I (1969) Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhängigkeit und optimaler Temperaturbereich der Netto-Photosynthese. Flora Abt B 158: 608–630Google Scholar
  67. Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83: 553–559CrossRefGoogle Scholar
  68. Rabotnov TA (1978) On coenopopulations of plants reproducing by seeds. Structure and functioning of plant populations. Verh K Ned Akad Wet Natuurkd 2/70: 1–26Google Scholar
  69. Rastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhoffer KJ, Hobbie JE, Aber JD (1991) A general biogeochemical model describing the response of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition. Tree Physiol 9: 101–126PubMedGoogle Scholar
  70. Raunkiaer C (1904) Biological types with reference to the adaptation of plants to survive the unfavourable season. In: Egerton FN (ed) History of ecology, life forms of plants and Statistical plant geography. Arno, New York (reprint 1977)Google Scholar
  71. Rundel PW, Nobel PS (1991) Structure and function in desert root systems. In: Atkinson D (ed) Plant root growth. An ecological perspective. Br Ecol Soc Spec Publ 10. Blackwell, Oxford, pp 349–378Google Scholar
  72. Russell G, Marshall B, Jarvis PG (1989a) Plant and canopies: their growth, form and function. Cambridge Univ Press, CambridgeCrossRefGoogle Scholar
  73. Russell G, Jarvis PG, Monteith JL (1989b) Absorption of radiation by canopies and stand growth. In: Russell G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, pp 21–39CrossRefGoogle Scholar
  74. Rychnovska M (1976) Transpiration in wet meadows and some other types of grassland. Folia Geobot Phytotaxon (Praha) 11: 427–432Google Scholar
  75. Sackville-Hamilton NR, Schmid B, Harper JL (1987) Life history concepts and population biology of clonal organisms. Proc R Soc Lond B 232: 35–57CrossRefGoogle Scholar
  76. Schulze ED (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Springer, Berlin Heidelberg New York, pp 616–676Google Scholar
  77. Schulze ED (1983) Root-shoot interactions and plant life forms. Neth J Agric Sci 4: 291–303Google Scholar
  78. Schulze E-D, Hall AE (1982) Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology new series, 12B, physiological plant ecology II. Springer, Berlin Heidelberg New York, pp 181–230Google Scholar
  79. Schulze ED, Fuchs M, Fuchs MI (1977) Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest for northern Germany. Oecologia 30: 239–248CrossRefGoogle Scholar
  80. Schulze ED, Küppers M, Matyssek R (1986) The roles of carbon balance and branching pattern in the growth of woody species. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 585–602Google Scholar
  81. Sinclair TR, Murphy CE Jr., Knoerr KR (1976) Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. J Appl Ecol 13: 813CrossRefGoogle Scholar
  82. Specht RL, Specht A (1989) Canopy structure in Eucalyptus-dominated communities in Australia along climatic gradients. Acta Oecol Oecol Plant 10: 191–213Google Scholar
  83. Stocker O (1967) Der Wasser-und Photosynthese-Haushalt mitteleuropäischer Gräser, ein Beitrag zum allgemeinen Konstitutionsproblem des Grastypus. Flora [B] 157: 56–96Google Scholar
  84. Thompson L, Harper JL (1988) The effect of grasses on the quality of transmitted radiation and its influence on the growth of white clover, Trifolium repens. Oecologia 75: 343–347CrossRefGoogle Scholar
  85. Tilman D (1989) Competition, nutrient reduction and the competitive neighborhood of a bunchgrass. Funct Ecol 3: 215–219CrossRefGoogle Scholar
  86. Turesson G (1930) The selective effect of climate upon the plant species. Hereditas 14: 99–152CrossRefGoogle Scholar
  87. Turner NC, Schulze ED, Gollan T (1984) The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. I. Species comparisons at high soil water contents. Oecologia 63: 338–342CrossRefGoogle Scholar
  88. Vareschi V (1980) Vegetationsökologie der Tropen. Ulmer, StuttgartGoogle Scholar
  89. Webb W, Szarek S, Lauenroth W, Kinerson R, Smith M (1978) Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology 59: 1239–1247CrossRefGoogle Scholar
  90. Werger MJA, Hirose T (1988) Effects of light climate and nitrogen partitioning on the canopy structure of stands of a dicotyledonous, herbaceous vegetation. In: Werger MJA, Van der Aart PJM, During HJ, Verhoeven JTA (eds) Plant form and vegetation structure. SPB Academic, The Hague, pp 171–181Google Scholar
  91. Whittaker RH (1975) Communities and ecosystems, 2nd edn. Macmillan, New YorkGoogle Scholar
  92. Wilson SD, Tilman D (1991) Components of plant competition along an experimental gradient of nitrogen availability. Ecology 72: 1050–1065CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ch. Körner

There are no affiliations available

Personalised recommendations