Skip to main content

Actions of Lie Groups on Low-dimensional Manifolds

  • Chapter
  • 1296 Accesses

Part of the Encyclopaedia of Mathematical Sciences book series (EMS,volume 20)

Abstract

This section is devoted to results on classification of analytic local actions of Lie groups on open subsets of the spaces ℝn and ℂn for small n. In the cases n = 1, 2 the classification was already obtained by Lie (see, for example, Vladimirov 1979, Chebotarev 1940).

Keywords

  • Homogeneous Space
  • Transformation Group
  • Transitive Action
  • Homogeneous Manifold
  • English Trans

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-57999-8_12
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-57999-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhiezer, D. N. (1974): Compact complex homogeneous spaces with solvable fundamental group. Izv. Akad. Nauk SSSR, Ser. Mat. 38, No. 1, 59–80. English transl.: Math. USSR, Izv. 8, 61–83. Zbl.309. 22008

    MathSciNet  Google Scholar 

  • Alekseevskij, D. B. (1974): Lie groups and homogeneous spaces. Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 11, 37–123. Zbl. 296. 22010. English transl.: J. Sov. Math. 4, 483–539

    Google Scholar 

  • Alekseevskij, D. B. (1979): On proper actions of Lie groups. Usp. Mat. Nauk 34, No. 1, 219–220. Zbl. 422. 53020. English transl.: Russ. Math. Surv. 34. No. 1, 215–216

    MATH  Google Scholar 

  • Alekseevskij, D. B. (1982): Lie groups. Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 20, 153–192. Zbl. 532. 22010. English transl.: J. Sov. Math. 28, 924–949 (1985)

    Google Scholar 

  • Auslander, L. (1973): An exposition of the structure of solvmanifolds. I, II. Bull. Am. Math. Soc. 79, No. 2, 227–261, 262–285. Zbl. 265. 22016 and Zbl. 265. 22017

    MathSciNet  MATH  Google Scholar 

  • Auslander, L., Green, L., Hahn, F. (1963): Flows on Homogeneous Spaces. Ann. Math. Stud., No. 53, Princeton Univ. Press, Princeton. Zbl. 106, 368

    Google Scholar 

  • Auslander, L., Szczarba, R. (1962): Characteristic classes of compact solvmanifolds. Ann. Math., II. Ser., 76, No. 1, 1–8. Zbl. 114, 399

    MathSciNet  MATH  Google Scholar 

  • Auslander, L., Szczarba, R. (1975a): Vector bundles over tori and noncompact solvmanifolds. Am. J. Math. 97, No. 1, 260–281. Zbl. 303. 22006

    MathSciNet  MATH  Google Scholar 

  • Auslander, L., Szczarba, R. (1975b): On free nilmanifolds and their associated non-compact solvmanifolds. Duke Math. J. 42, No. 2, 357–369. Zbl. 333. 22005

    MathSciNet  MATH  Google Scholar 

  • Auslander, L., Tolimieri, R. (1975): Abelian harmonic analysis, theta functions and function algebras on a nilmanifold. Lect. Notes Math. 436, Springer, Berlin. Zbl. 321. 43012

    Google Scholar 

  • Barth, W., Otte, M. (1969): Über fast-uniforme Untergruppen komplexer Liegruppen und auflösbare komplexe Mannigfaltigkeiten. Comment. Math. Helv. 44, No. 3, 269–281. Zbl. 172, 378

    MathSciNet  MATH  Google Scholar 

  • Barut, A. O., Raczka, R. (1977): Theory of Group Representations and Applications. Polish Scient. Publishers, Warsaw

    Google Scholar 

  • Borel, A. (1950): Le plan projectif des octaves et les sphères comme espaces homogènes. C. R. Acad. Sci., Paris 230, No. 15, 1378–1380. Zbl. 41, 522

    MathSciNet  MATH  Google Scholar 

  • Borel, A. (1953): Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math., II. Ser. 57, No. 1, 115–207. Zbl. 52, 400

    MathSciNet  MATH  Google Scholar 

  • Borel, A. (1960): Seminar on transformation groups. Ann. Math. Stud. No. 46, Princeton Univ. Press, Princeton. Zbl. 91, 372

    Google Scholar 

  • Borel, A., Tits, J. (1965): Groupes réductifs. Publ. Math., Inst. Hautes Etud. Sci. 27, 659–755. Zbl. 145, 174

    MATH  Google Scholar 

  • Bourbaki, N. (1960): Topologie générale, Ch.3, 4. 3-ème ed. Hermann. Paris. Zbl. 102, 271

    MATH  Google Scholar 

  • Bourbaki, N. (1968): Groupes et algèbres de Lie. Ch.4–l6. Hermann, Paris. Zbl. 186, 330

    MATH  Google Scholar 

  • Bourbaki, N. (1982): Groupes et algèbres de Lie, Ch.9. Masson, Paris. Zbl. 505. 22006

    MATH  Google Scholar 

  • Bredon, G. E. (1972): Introduction To Compact Transformation Groups. Acad. Press, New York, London. Zbl. 246. 57017

    MATH  Google Scholar 

  • Chebotarev, N. G. (1940): Theory of Lie Groups. GITTL, Moscow, Leningrad (Russian)

    Google Scholar 

  • Chevalley, C. (1946): Theory of Lie Groups. Vol.I. Princeton Univ. Press, Princeton

    MATH  Google Scholar 

  • D’Atri, J. E., Ziller, W. (1979): Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups. Mem. Am. Math. Soc. 18, No. 215. Zbl. 404. 53044

    Google Scholar 

  • Dao Van Tra (1975): On spherical sections on a compact homogeneous space. Usp. Mat. Nauk 30, No. 5, 203–204 (Russian). Zbl. 321. 57026

    MATH  Google Scholar 

  • Dao Van Tra (1981): On extensions of groups acting transitively on compact manifolds. In Geom. Metody Zadachakh Algebry Anal., 87–106 (Russian). Zbl. 485. 22019

    Google Scholar 

  • Dubrovin, B. A., Novikov, S. P., Fomenko, A. T. (1980): Modern Geometry. Nauka, Moscow. Zbl. 433. 53001. English transl.: Grad. Texts Math. 93, 1984, and 104, 1985. Springer, New York

    MATH  Google Scholar 

  • Dynkin, E. B., Onishchik, A. L. (1955): Compact global Lie groups. Usp. Mat. Nauk 10, No. 4, 3–74. Zbl. 65, 262. English transl.: Amer. Math. Soc. Transl. 21 (1962), 119–192

    MATH  Google Scholar 

  • Eisenhart, L. P. (1933): Continuous Groups of Transformations. Princeton University Press, Princeton; Humphrey Milford, London. Zbl. 8, 108

    MATH  Google Scholar 

  • Fujimoto, H., (1968): On the holomorphic automorphism groups of complex spaces. Nagoya Math. J. 33, 85–106. Zbl. 165, 404

    MathSciNet  MATH  Google Scholar 

  • Golubitsky, M. (1972): Primitive actions and maximal subgroups of Lie groups. J. Differ. Geom. 7, No. 1–2, 175–191. Zbl. 265. 22024

    MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., Rothschild, B. (1971): Primitive subalgebras of exceptional Lie algebras. Pac. J. Math. 39, No. 2, 371–393. Zbl. 209, 66

    MathSciNet  Google Scholar 

  • Gorbatsevich, V. V. (1974): On a class of factorizations of semi-simple Lie groups and Lie algebras. Mat. Sb., Nov. Ser. 95, No. 2, 294–304. Zbl. 311. 22017. English transl.: Math. USSR, Sb. 24, 287–297

    Google Scholar 

  • Gorbatsevich, V. V. (1977a): On three-dimensional homogeneous spaces. Sib. Mat. Zh. 18, No. 2, 280–293. Zbl. 373. 14017. English transl.: Sib. Math. J. 18, 200–210

    MathSciNet  MATH  Google Scholar 

  • Gorbatsevich, V. V. (1977b): On the classification of four-dimensional compact homogeneous spaces. Usp. Mat. Nauk 32, No. 2, 207–208 (Russian). Zbl. 362. 57020

    MATH  Google Scholar 

  • Gorbatsevich, V. V. (1977c): On Lie groups acting transitively on compact solvmanifolds. Izv. Akad. Nauk SSSR, Ser. Mat. 41, No. 2, 285–307. Zbl. 362. 57012. English transl.: Math. USSR, Izv. 11, 271-292.

    MathSciNet  MATH  Google Scholar 

  • Gorbatsevich, V. V. (1979): Splittings of Lie groups and their applications to the study of homogeneous spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 43, No. 6, 1127–1157. Zbl. 424. 22006. English transl.: Math. USSR, Izv. 11, 271–292.

    MathSciNet  Google Scholar 

  • Gorbatsevich, V. V. (1980): On compact homogeneous spaces of low dimension. In Geom. Metody Zadachakh Algebry Anal. 2, 37–60 (Russian). Zbl. 475. 53043

    MathSciNet  Google Scholar 

  • Gorbatsevich, V. V. (1981a): On compact homogeneous spaces with solvable fundamental group I. In Geom. Metody Zadachakh Algebry Anal. 1981, 71–87 (Russian) Zbl. 499. 57015

    Google Scholar 

  • Gorbatsevich, V. V. (1981b): On a fibration of a compact homogeneous space. Tr. Mosk. Mat. O.-va 43, 116–141. English transl.: Trans. Mosc. Math. Soc. No. 1, 128–157 (1983). Zbl. 525. 57034

    MathSciNet  Google Scholar 

  • Gorbatsevich, V. V. (1981c): Modifications of transitive actions of Lie groups on compact manifolds and their applications. In Vopr. Teor. Grupp Gomologicheskoj Algebry, 131–145 (Russian). Zbl. 506. 57022

    Google Scholar 

  • Gorbatsevich, V. V. (1981d): Two fibrations of a compact homogeneous space and some applications. Izv. Vyssh. Uchebn. Zaved., Mat. No. 6, 73–75. Zbl. 492. 57013. English transl.: Sov. Math. 25, No. 6, 73–75

    Google Scholar 

  • Gorbatsevich, V. V. (1981e): On compact homogeneous spaces with semi-simple fundamental group I. Sib. Mat. Zh. 22, No. 1, 47–67. Zbl. 486. 57019. English transl.: Sib. Math. J. 22, 34–49

    MathSciNet  MATH  Google Scholar 

  • Gorbatsevich, V. V. (1982): On compact homogeneous spaces with solvable fundamental group II. Vopr. Teor. Grupp Gomologicheskoy Algebry, 13–28 (Russian). Zbl. 583. 57014

    Google Scholar 

  • Gorbatsevich, V. V. (1983a): On a class of compact homogeneous spaces. Izv. Vyssh. Uchebn. Zaved., Mat. 9, 18–21. Zbl. 564. 57019. English transl.: Sov. Math 27, No. 9, 18–22

    MathSciNet  Google Scholar 

  • Gorbatsevich, V. V. (1983b): Compact aspherical homogeneous spaces up to a finite covering. Ann. Global. Anal. Geom. 1, No. 3, 103–118. Zbl. 535. 57024

    MathSciNet  MATH  Google Scholar 

  • Gorbatsevich, V. V. (1985): On compact homogeneous spaces with solvable fundamental group III. Vopr. Teor. Grupp Gomologicheskoj Algebry, 93–103 (Russian)

    Google Scholar 

  • Gorbatsevich, V. V (1986a): On Lie groups with lattices and their properties. Dokl. Akad. Nauk SSSR 287, No 1, 33–37. English transl.: Sov. Math., Dokl. 33, 321–325. Zbl. 619. 22014

    MathSciNet  Google Scholar 

  • Gorbatsevich, V. V. (1986b): On compact homogeneous spaces with semi-simple fundamental group II. Sib. Mat. Zh. 37, No. 5, 38–49. English transl.: Sib. Math. J. 27, 660–669. Zbl. 644. 57006

    MathSciNet  Google Scholar 

  • Gorbatsevich, V. V (1988): On some classes of homogeneous spaces close to compact. Dokl. Akad. Nauk SSSR 303, No. 4, 785–788. English transl.: Sov. Math. Dokl. 38, No. 3, 592–596. Zbl. 703. 22006

    Google Scholar 

  • Goto, M., Wang, H.-C. (1978): Non-discrete uniform subgroups of semi-simple Lie groups. Math. Ann. 198, No. 4, 259–286. Zbl. 228. 22014

    MathSciNet  Google Scholar 

  • Helgason, S. (1962): Differential Geometry and Symmetric Spaces. Academic Press. New York, London. Zbl. 111, 181

    MATH  Google Scholar 

  • Hermann, R. (1965): Compactification of homogeneous spaces. I. J. Math. Mech. 14, No. 4, 655–678. Zbl. 141, 196

    MathSciNet  MATH  Google Scholar 

  • Hsiang, W. C., Hsiang, W. Y. (1967): Differentiable actions of compact connected classical groups. I. Am. J. Math. 89, No. 3, 705–786. Zbl. 184, 272

    MathSciNet  MATH  Google Scholar 

  • Hsiang, W. Y. (1975): Cohomology Theory of Topological Transformation Groups. Springer, Berlin. Zbl. 429. 57011

    MATH  Google Scholar 

  • Hsiang, W. Y., Su, J. C. (1968): On the classification of transitive actions on Stiefel manifolds. Trans. Am. Math. Soc. 130, No. 2, 322–336. Zbl. 429. 57011

    MathSciNet  MATH  Google Scholar 

  • Husemoller, D. (1966): Fibre Bundles. McGraw-Hill, New York. Zbl. 199, 271

    MATH  Google Scholar 

  • Ibragimov, N. Kh. (1983): Transformation Groups in Mathematical Physics. Nauka, Moscow. Zbl. 529. 53014. English transl.: Reidel, Dordrecht 1985

    MATH  Google Scholar 

  • Iwahori, N., Sugiura, M. (1966): A duality theorem for homogeneous manifolds of compact Lie groups. Osaka J. Math. 3, No. 1, 139–153. Zbl. 158, 277

    MathSciNet  MATH  Google Scholar 

  • Jänich, K. (1968): Differenzierbare G-Mannigfaltigkeiten. Lect. Notes Math. 59, Springer, Berlin. Zbl. 159, 537

    Google Scholar 

  • Johnson, R. (1972): Presentation of solvmanifolds. Am. J. Math. 94, No. 1, 82–102.

    MATH  Google Scholar 

  • Kamerich, B. N. P. (1977): Transitive transformation groups of products of two spheres. Krips Repro. Meppel.

    Google Scholar 

  • Kantor, I. L. (1974): The double ratio of four points and other invariants on homogeneous spaces with parabolic stabilizers. Seminar on Vector and tensor analysis 17, 250–313 (Russian)

    MathSciNet  MATH  Google Scholar 

  • Karpelevich, F. I. (1953): Surfaces of transitivity of a semi-simple subgroup of the group of motions of a symmetric space. Dokl. Akad. Nauk SSSR 93, 401–404 (Russian)

    MATH  Google Scholar 

  • Karpelevich, F. I. (1956): On fibrations of homogeneous spaces. Uspehi Mat Nauk 11, No. 3, 131–138 (Russian)

    MathSciNet  MATH  Google Scholar 

  • Kaup, W. (1967): Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math. 3, No. 1, 43–70

    MathSciNet  MATH  Google Scholar 

  • Kim Sen En, Morozov, V. V. (1955): On imprimitive groups of the three-dimensional complex space. Uch. Zap. Kazh. Univ. 115, No. 14, 69–85 (Russian)

    Google Scholar 

  • Kobayashi, S. (1972): Transformation Groups in Differerntial Geometry. Springer, Berlin. Zbl. 246. 53031

    Google Scholar 

  • Komrakov, B. P. (1990): Maximal subalgebras of semisimple real Lie algebras and a problem of Sophus Lie. Dokl. Akad. Nauk SSSR 311, No. 3, 528–532. English transl.: Sov. Math., Dokl. 41, No. 2, 269–273

    MathSciNet  Google Scholar 

  • Komrakov, B. P. (1991): Primitive actions and the problem of Sophus Lie. Vysheishaya Shkola Minsk (Russian)

    Google Scholar 

  • Koszul, J. L. (1978): Variante d’un théorème de H. Ozeki. Osaka J. Math. 15, 547–551. Zbl. 395. 17008

    MathSciNet  MATH  Google Scholar 

  • Kreck, M., Stolz, S. (1988): A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds with SU(3) × SU(2) × U(1)-symmetry. Ann. Math., II. Ser. 127, No. 2, 373–388. Zbl. 649. 53029

    MathSciNet  MATH  Google Scholar 

  • Lie, S., Engel, F. (1888): Theorie der Transformationsgruppen I. Teubner, Leipzig. Jbuch. 21, 356

    Google Scholar 

  • Lie, S., Engel, F. (1890): Theorie der Transformationsgruppen II. Teubner, Leipzig. Jbuch. 23, 364

    Google Scholar 

  • Lie, S., Engel, F. (1893): Theorie der Transformationsgruppen III. Teubner, Leipzig. Jbuch 25, 632

    Google Scholar 

  • Lukatskij, A. M. (1971): Spherical functions on G-spaces of non-compact Lie groups. Uspehi Mat. Nauk 26, No. 5, 212–213 (Russian).

    Google Scholar 

  • Maltsev, A. I. (1949): On a class of homogeneous spaces. Izv. Akad. Nauk SSSR. Ser. Mat. 13, No. 1, 9–32 (Russian). Zbl. 34, 17

    Google Scholar 

  • Malyshev, F. M. (1975): Decompositions of almost compact Lie algebras. Vestn. Mosk. Univ., Ser. I 30 No. 2, 87–90. Zbl. 297. 17003. English transl.: Mosc. Univ. Math. Bull. 30, No. 1/2, 143–146

    MathSciNet  MATH  Google Scholar 

  • Malyshev, F. M. (1978): On decompositions of nilpotent Lie algebras. Mat. Zametki 23, No. 1, 27–30. Zbl. 373. 17005. English transl.: Math. Notes 23, 17–18

    MathSciNet  MATH  Google Scholar 

  • Manturov, O. V. (1966): Homogeneous Riemannian spaces with irreducible rotation group. Tr. Semin. Vektorn. Tenzorn. Anal. 13, 68–145 (Russian). Zbl. 173, 241

    MathSciNet  MATH  Google Scholar 

  • Massey, W. (1967): Algebraic Topology: An Introduction. Harcourt, Brace & World, Inc., New York. Zbl. 153, 259

    MATH  Google Scholar 

  • Mather, J. N. (1977): Differentiable invariants. Topology 16, No. 2, 145–155. Zbl. 376. 58002

    MathSciNet  MATH  Google Scholar 

  • Merzlyakov, Yu. I. (1980): Rational Groups. Nauka, Moscow (Russian). Zbl. 518. 20032

    MATH  Google Scholar 

  • Milovanov, M. B. (1980): Description of solvable Lie groups with a given uniform subgroup. Mat. Sb., Nov. Ser. 113, No. 1, 98–117 (Russian). Zbl. 496. 22013

    MathSciNet  Google Scholar 

  • Mkhitaryan, V. G. (1981): On a class of homogeneous spaces of compact Lie groups. Usp. Mat. Nauk 36, No. 2, 193–194. English transl.: Russ. Math. Surv. 36, No. 2, 185–186. Zbl. 502. 57023

    MathSciNet  Google Scholar 

  • Montgomery, D., Samelson, H. (1943): Transformation groups on spheres. Ann. Math., II. Ser. 44, No. 3, 454–470

    MathSciNet  MATH  Google Scholar 

  • Montgomery, D., Zippin, L. (1955): Topological Transformation Groups. Wiley, New York. Zbl. 68, 19

    MATH  Google Scholar 

  • Moore, C., C. (1984): Cocompact subgroups of semi-simple Lie groups. J. Reine Angew. Math. 350, 173–177. Zbl. 525. 22017

    MathSciNet  MATH  Google Scholar 

  • Morozov, V. V. (1939): On primitive groups. Mat. Sb., Nov. Ser. 5, No. 2, 355–390 (Russian). Zbl. 23, 15

    MATH  Google Scholar 

  • Mostow, G. D. (1950): The extensibility of local Lie groups of transformations and groups on surfaces. Ann. Math., II. Ser. 52, No. 3, 606–636. Zbl. 40, 152

    MathSciNet  MATH  Google Scholar 

  • Mostow, G. D. (1954): Factor spaces of solvable groups. Ann. Math., II. Ser. 60, No. 1, 1–27. Zbl. 57, 261

    MathSciNet  MATH  Google Scholar 

  • Mostow, G. D. (1955a): Some new decomposition theorems for semi-simple groups. Mem. Am. Math. Soc. 14, 31–54. Zbl. 64, 259

    MathSciNet  MATH  Google Scholar 

  • Mostow, G. D. (1955b): On covariant fiberings of Klein spaces I. Am. J. Math. 77, No. 2, 247–278. Zbl. 67, 160

    MathSciNet  MATH  Google Scholar 

  • Mostow, G. D. (1957): Equivariant embeddings in Euclidean space. Ann. Math., II. Ser. 65, No. 3, 432–446. Zbl. 80, 167

    MathSciNet  MATH  Google Scholar 

  • Mostow, G. D. (1961): On maximal subgroups in real Lie groups. Ann. Math., II. Ser. 74, No. 3, 503–517. Zbl. 80, 167

    MathSciNet  MATH  Google Scholar 

  • Mostow, G. D. (1962a): Homogeneous spaces with finite invariant measure. Ann. Math., II. Ser. 75, No. 1, 17–37. Zbl. 115, 257

    MathSciNet  MATH  Google Scholar 

  • Mostow, G. D. (1962b): Covariant fiberings of Klein spaces II. Am. J. Math. 84, No. 3, 466–474. Zbl. 123, 163

    MathSciNet  MATH  Google Scholar 

  • Mostow, G. D. (1971): Arithmetic subgroups of groups with radical. Ann. Math., II. Ser. 93, No. 3, 409–438. Zbl. 212, 364

    MathSciNet  Google Scholar 

  • Mostow, G. D. (1975): On the topology of homogeneous spaces of finite measure. Symp. Math. Ist. Naz. Alta Mat. 16, Acad. Press, 375–398. Zbl. 319. 22008

    Google Scholar 

  • Nagano, T. (1965): Transformation groups on compact symmetric spaces. Trans. Am. Math. Soc. 118, 428–453. Zbl. 151, 288

    MathSciNet  MATH  Google Scholar 

  • Nakamura, I. (1975): Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, No. 1, 85–112. Zbl. 297. 32019

    MATH  Google Scholar 

  • Nazaryan, R. O. (1975a): On factorization of simple real Lie groups. Izv. Akad. Nauk Arm. SSR, 10, No. 1, 3–22 (Russian). Zbl. 308. 22011

    MATH  Google Scholar 

  • Nazaryan, R. O. (1975b): Minimal factorizations of simple real Lie groups. Izv. Akad. Nauk Arm. SSR, Mat. 10, No. 5, 455–477 (Russian). Zbl. 335. 22008

    MATH  Google Scholar 

  • Nazaryan, R. O. (1981): More about factorizations of simple real Lie groups. In Vopr. Teor. Grupp Gomologicheskoj Algebry, 69–79 (Russian)

    Google Scholar 

  • Onishchik, A. L. (1960): Complex envelopes of compact homogeneous spaces. Dokl. Akad. Nauk SSSR 130, No. 4, 726–729 (Russian). Zbl. 90, 94

    Google Scholar 

  • Onishchik, A. L. (1962): Inclusion relations between transitive compact transformation groups. Tr. Mosk. Mat. O-va, 11, 199–242. Zbl. 192, 126. English transl.: Transl., II. Ser., Am. Math. Soc. 50, 5–58 (1966).

    MATH  Google Scholar 

  • Onishchik, A. L. (1963): On transitive compact transformation groups. Mat. Sb., Nov. Ser. 60, No. 4, 447–485. Zbl. 203, 263. English transl.: Transl., II. Ser., Am. Math. Soc. 55, 153–194 (1966).

    Google Scholar 

  • Onishchik, A. L. (1966): On Lie groups, acting transitively on compact manifolds. I, Mat. Sb., Nov. Ser. 71, No. 4, 483–494. Zbl. 198, 289. English transl.: Transl., II. Ser., Am. Math. Soc. 73, 59–72 (1968)

    Google Scholar 

  • Onishchik, A. L. (1967): On Lie groups, acting transitively on compact manifolds. II, Mat. Sb., Nov. Ser. 74, No. 3, 398–416. Zbl. 198, 289. English transl.: Math. USSR, Sb. 3, 373–388 (1968)

    Google Scholar 

  • Onishchik, A. L. (1968): On Lie groups, acting transitively on compact manifolds. III, Mat. Sb., Nov. Ser. 75, No. 2, 255–263. Zbl. 198, 290. English transl.: Math. USSR, Sb. 4, 233–240 (1969)

    Google Scholar 

  • Onishchik, A. L. (1969): Decompositions of reductive Lie groups. Mat. Sb., Nov. Ser. 80, No. 4, 553–599. Zbl. 222. 22011. English transl.: Math. USSR, Sb. 9, 515–554

    Google Scholar 

  • Onishchik, A. L. (1970): Lie groups which act transitively on Grassmann and Stiefel manifolds. Mat. Sb., Nov. Ser. 83, No. 3, 407–428. Zbl. 206, 317. English transl.: Math. USSR, Sb. 12, 405–427

    Google Scholar 

  • Onishchik, A. L. (1976): On invariants and almost invariants of compact Lie groups of transformations. Tr. Mosk. Mat. O.-va 35, 235–264. Zbl. 406. 57025. English transl.: Trans. Mosc. Math. Soc, 35, 237–267

    MATH  Google Scholar 

  • Onishchik, A. L. (1977, 1981): On extensions of transitive transformation groups. Izv. Vyssh. Uchebn. Zaved., Mat. No. 3, 53–65. Zbl. 362. 57007. Corrections. (1981) No. 7, 88. Zbl. 474. 57021. English transl.: Sov. Math. 21, 42–51, and 25, 104–105

    Google Scholar 

  • Onishchik, A. L. (1979): Remark on invariants of groups generated by reflections. In Vopr. Teor. Grupp Gomologicheskoj Algebry, 138–141. Zbl. 435.20026. English transl.: Selecta Math. Sov. 3 (1983/84), 239–241

    Google Scholar 

  • Oniščik (= Onishchik), A. L. (1981): Parabolic factorizations of semi-simple algebraic groups. Math. Nachr. 104, 315–329. Zbl. 531. 20023

    MathSciNet  MATH  Google Scholar 

  • Oniščik (= Onishchik), A. L. (1988): On the centre of a transitive semisimple Lie group. Ann. Global Anal. Geom. 6, No. 3, 265–272. Zbl. 685.57023

    MathSciNet  MATH  Google Scholar 

  • Ovsyannikov, L. V. (1978): Groups Analysis of Differential Equations. Nauka, Moscow (Russian). Zbl. 484.58001

    Google Scholar 

  • Palais, R. S. (1957 a): A Global Formulation of the Lie Theory of Transformation Groups. Mem. Am. Math. Soc. 22. Zbl. 178, 265

    Google Scholar 

  • Palais, R. S. (1957 b): Imbedding of compact, differentiable transformation groups in orthogonal representations. J. Math. Mech. 6, No. 5, 673–678. Zbl. 86, 26

    MathSciNet  MATH  Google Scholar 

  • Palais, R. S. (1960): The Classification of G-Spaces. Mem. Am. Math. Soc. 36. Zbl. 119, 384

    Google Scholar 

  • Palais, R. S. (1968): Foundations of Global Non-linear Analysis. Benjamin. New York-Amsterdam. Zbl. 164, 111

    MATH  Google Scholar 

  • Palais, R. S., Stewart, T. S. (1961a): Torus bundles over a torus. Proc. Am. Math. Soc. 12, No. 1, 26–29. Zbl. 102, 387

    MathSciNet  MATH  Google Scholar 

  • Palais, R. S., Stewart, T. S. (1961b): The cohomology of differentiable transformation groups. Am. J. Math. 83, No. 4, 623–644. Zbl. 104, 177

    MathSciNet  MATH  Google Scholar 

  • Pontryagin, L. S. (1984): Topological Groups. 4th edition. Nauka, Moscow. Zbl. 534.22001. German transl.: Teubner, Leipzig, 1957/1958

    MATH  Google Scholar 

  • Raghunathan, M. (1972): Discrete Subgroups of Lie Groups. Springer, Berlin. Zbl. 254. 22005

    MATH  Google Scholar 

  • Samelson, H. (1952): Topology of Lie groups. Bull. Am. Math. Soc. 58, No. 1, 2–37. Zbl. 47, 167

    MathSciNet  MATH  Google Scholar 

  • Samelson, H. (1958): On curvature and characteristic of homogeneous spaces. Mich. Math. J. 5, No. 1, 13–18. Zbl. 84, 374

    MathSciNet  MATH  Google Scholar 

  • Scheerer, H. (1971): Transitive actions on Hopf homogeneous spaces. Manuscr. Math. 4, No. 2, 99–134. Zbl. 212, 286

    MathSciNet  MATH  Google Scholar 

  • Schneider, V. (1973): Transitive actions on highly connected spaces. Proc. Amer. Math. Soc. 38, No. 1, 179–185

    MathSciNet  MATH  Google Scholar 

  • Schneider, V. (1975): Homogeneous spaces with vanishing Steenrod squaring operations. Proc. Amer. Math. Soc. 50, 451–458

    MathSciNet  MATH  Google Scholar 

  • Schultz, R. (1984): Nonlinear analogs of linear group actions on spheres. Bull. Am. Math. Soc, New Ser. 11, No. 2, 263–285. Zbl. 564. 57001

    MATH  Google Scholar 

  • Schwarz, G. W. (1975): Smooth functions invariant under the action of a compact Lie group. Topology 14, No. 1, 63–68. Zbl. 297.57015

    MathSciNet  MATH  Google Scholar 

  • Serre, J-P. (1951): Homologie singulière des espaces fibrés. Applications. Ann. Math., II. Ser. 54, No. 3, 425–505. Zbl. 45, 260

    MATH  Google Scholar 

  • Serre, J-P. (1971): Cohomologie des Groupes Discrets. Ann. Math. Stud., No. 70, Princeton Univ. Press, Princeton, 77–169. Zbl. 235.22020

    Google Scholar 

  • Shchetinin, A. (1988): On a class of compact homogeneous spaces I. Ann. Global Anal. Geom. 6, No. 2, 119–140. Zbl. 635.57025

    MathSciNet  MATH  Google Scholar 

  • Shchetinin, A. (1990): On a class of compact homogeneous spaces II. Ann. Global Anal. Geom. 8, No. 3, 227–247. Zbl. 718.57014

    MathSciNet  MATH  Google Scholar 

  • Steenrod, N (1951): The Topology of Fibre Bundles. Princeton Univ. Press, Princeton. Zbl. 54, 71

    MATH  Google Scholar 

  • Sternheimer, D. (1968): Extensions et unifications d’algèbres de Lie. J. Math. Pures Appl., IX. Sér. 47, No. 3, 247–287. Zbl. 244.17015+

    MathSciNet  MATH  Google Scholar 

  • Sulanke, R., Wintgen, P. (1972): Differentialgeometrie und Faserbündel. Deutscher Verlag des Wissenschaften, Berlin. Zbl. 327. 53020

    Google Scholar 

  • Tits, J. (1962): Espaces homogènes complexes compacts. Comment Math. Helv. 37, No. 2, 111–120. Zbl. 108, 363

    MathSciNet  MATH  Google Scholar 

  • Vinberg, E. B. (1961): The Morozov-Borel theorem for real Lie groups. Dokl. Akad Nauk SSSR 141, No. 2, 270–273. English transl.: Sov. Math., Dokl. 2, 1416–1419. Zbl. 112, 25

    MathSciNet  Google Scholar 

  • Vinberg, E. B. (1963): Lie groups and homogeneous spaces. Itogi Nauki Tekh., Ser. Algebra, Topologiya. 1962, 5–32 (Russian). Zbl. 132, 22

    Google Scholar 

  • Vishik, E. Ya. (1973): Lie groups, transitive on simply connected compact manifolds. Mat. Sb., Nov. Ser. 92, No. 4, 564–570. Zbl. 289. 22007. English transl.: Math. USSR, Sb. 21, 558–564

    Google Scholar 

  • Vladimirov, S. A. (1979): Groups of Symmetries of Differential Equations and Relativistic Fields. Atomizdat, Moscow. Zbl. 399. 58021

    Google Scholar 

  • Wang, H.-C. (1954): Closed manifolds with homogeneous complex structures. Am. J. Math. 76, No. 1, 1–32. Zbl. 55, 166

    MATH  Google Scholar 

  • Wang, H.-C. (1956): Discrete subgroups of solvable Lie groups. Ann. Math., II. Ser. 64, No. 1, 1–19. Zbl. 73, 285

    MATH  Google Scholar 

  • Warner, F. W. (1983): Foundations of Differentiable Manifolds and Lie Groups. Springer, New York. Zbl. 516. 58001

    MATH  Google Scholar 

  • Wasserman, A. (1969): Equivariant differential topology. Topology 8, No. 2, 127–150. Zbl. 215, 247

    MathSciNet  MATH  Google Scholar 

  • Wells, R. O. (1973): Differential Analysis on Complex Manifolds. Prentice Hall, Englewood Cliffs. Zbl. 262. 32005. 2nd ed. (1980) Springer, New York. Zbl. 435. 32004

    MATH  Google Scholar 

  • Wolf, J. A. (1968): The geometry and structure of isotropy-irreducible homogeneous spaces. Acta Math. 120, 59–148. Zbl. 157, 521

    MathSciNet  MATH  Google Scholar 

  • Wolf, J. A. (1972): Spaces of Constant Curvature. Univ. of California Press, Berkeley. Zbl. 162, 533. 3rd. ed. (1974) Publish or Perish, Boston. Zbl. 281. 53034

    Google Scholar 

  • Zabotin, Ya. I. (1958a): Semisimple transitive imprimitive groups of the four-dimensional complex space. Izv. Vyssh. Uchebn. Zaved., Mat. 1958, No. 4, 67–79 (Russian). Zbl. 125, 17

    Google Scholar 

  • Zabotin, Ya. I. (1958b): On transitive imprimitive groups with radical in the four-dimensional complex space. Izv. Vyssh. Uchebn. Zaved., Mat. 1958, No. 5, 73–85 (Russian). Zbl. 125, 17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Onishchik, A.L. (1993). Actions of Lie Groups on Low-dimensional Manifolds. In: Onishchik, A.L. (eds) Lie Groups and Lie Algebras I. Encyclopaedia of Mathematical Sciences, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57999-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57999-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61222-3

  • Online ISBN: 978-3-642-57999-8

  • eBook Packages: Springer Book Archive