Akhiezer, D. N. (1974): Compact complex homogeneous spaces with solvable fundamental group. Izv. Akad. Nauk SSSR, Ser. Mat. 38, No. 1, 59–80. English transl.: Math. USSR, Izv. 8, 61–83. Zbl.309. 22008
MathSciNet
Google Scholar
Alekseevskij, D. B. (1974): Lie groups and homogeneous spaces. Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 11, 37–123. Zbl. 296. 22010. English transl.: J. Sov. Math. 4, 483–539
Google Scholar
Alekseevskij, D. B. (1979): On proper actions of Lie groups. Usp. Mat. Nauk 34, No. 1, 219–220. Zbl. 422. 53020. English transl.: Russ. Math. Surv. 34. No. 1, 215–216
MATH
Google Scholar
Alekseevskij, D. B. (1982): Lie groups. Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 20, 153–192. Zbl. 532. 22010. English transl.: J. Sov. Math. 28, 924–949 (1985)
Google Scholar
Auslander, L. (1973): An exposition of the structure of solvmanifolds. I, II. Bull. Am. Math. Soc. 79, No. 2, 227–261, 262–285. Zbl. 265. 22016 and Zbl. 265. 22017
MathSciNet
MATH
Google Scholar
Auslander, L., Green, L., Hahn, F. (1963): Flows on Homogeneous Spaces. Ann. Math. Stud., No. 53, Princeton Univ. Press, Princeton. Zbl. 106, 368
Google Scholar
Auslander, L., Szczarba, R. (1962): Characteristic classes of compact solvmanifolds. Ann. Math., II. Ser., 76, No. 1, 1–8. Zbl. 114, 399
MathSciNet
MATH
Google Scholar
Auslander, L., Szczarba, R. (1975a): Vector bundles over tori and noncompact solvmanifolds. Am. J. Math. 97, No. 1, 260–281. Zbl. 303. 22006
MathSciNet
MATH
Google Scholar
Auslander, L., Szczarba, R. (1975b): On free nilmanifolds and their associated non-compact solvmanifolds. Duke Math. J. 42, No. 2, 357–369. Zbl. 333. 22005
MathSciNet
MATH
Google Scholar
Auslander, L., Tolimieri, R. (1975): Abelian harmonic analysis, theta functions and function algebras on a nilmanifold. Lect. Notes Math. 436, Springer, Berlin. Zbl. 321. 43012
Google Scholar
Barth, W., Otte, M. (1969): Über fast-uniforme Untergruppen komplexer Liegruppen und auflösbare komplexe Mannigfaltigkeiten. Comment. Math. Helv. 44, No. 3, 269–281. Zbl. 172, 378
MathSciNet
MATH
Google Scholar
Barut, A. O., Raczka, R. (1977): Theory of Group Representations and Applications. Polish Scient. Publishers, Warsaw
Google Scholar
Borel, A. (1950): Le plan projectif des octaves et les sphères comme espaces homogènes. C. R. Acad. Sci., Paris 230, No. 15, 1378–1380. Zbl. 41, 522
MathSciNet
MATH
Google Scholar
Borel, A. (1953): Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math., II. Ser. 57, No. 1, 115–207. Zbl. 52, 400
MathSciNet
MATH
Google Scholar
Borel, A. (1960): Seminar on transformation groups. Ann. Math. Stud. No. 46, Princeton Univ. Press, Princeton. Zbl. 91, 372
Google Scholar
Borel, A., Tits, J. (1965): Groupes réductifs. Publ. Math., Inst. Hautes Etud. Sci. 27, 659–755. Zbl. 145, 174
MATH
Google Scholar
Bourbaki, N. (1960): Topologie générale, Ch.3, 4. 3-ème ed. Hermann. Paris. Zbl. 102, 271
MATH
Google Scholar
Bourbaki, N. (1968): Groupes et algèbres de Lie. Ch.4–l6. Hermann, Paris. Zbl. 186, 330
MATH
Google Scholar
Bourbaki, N. (1982): Groupes et algèbres de Lie, Ch.9. Masson, Paris. Zbl. 505. 22006
MATH
Google Scholar
Bredon, G. E. (1972): Introduction To Compact Transformation Groups. Acad. Press, New York, London. Zbl. 246. 57017
MATH
Google Scholar
Chebotarev, N. G. (1940): Theory of Lie Groups. GITTL, Moscow, Leningrad (Russian)
Google Scholar
Chevalley, C. (1946): Theory of Lie Groups. Vol.I. Princeton Univ. Press, Princeton
MATH
Google Scholar
D’Atri, J. E., Ziller, W. (1979): Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups. Mem. Am. Math. Soc. 18, No. 215. Zbl. 404. 53044
Google Scholar
Dao Van Tra (1975): On spherical sections on a compact homogeneous space. Usp. Mat. Nauk 30, No. 5, 203–204 (Russian). Zbl. 321. 57026
MATH
Google Scholar
Dao Van Tra (1981): On extensions of groups acting transitively on compact manifolds. In Geom. Metody Zadachakh Algebry Anal., 87–106 (Russian). Zbl. 485. 22019
Google Scholar
Dubrovin, B. A., Novikov, S. P., Fomenko, A. T. (1980): Modern Geometry. Nauka, Moscow. Zbl. 433. 53001. English transl.: Grad. Texts Math. 93, 1984, and 104, 1985. Springer, New York
MATH
Google Scholar
Dynkin, E. B., Onishchik, A. L. (1955): Compact global Lie groups. Usp. Mat. Nauk 10, No. 4, 3–74. Zbl. 65, 262. English transl.: Amer. Math. Soc. Transl. 21 (1962), 119–192
MATH
Google Scholar
Eisenhart, L. P. (1933): Continuous Groups of Transformations. Princeton University Press, Princeton; Humphrey Milford, London. Zbl. 8, 108
MATH
Google Scholar
Fujimoto, H., (1968): On the holomorphic automorphism groups of complex spaces. Nagoya Math. J. 33, 85–106. Zbl. 165, 404
MathSciNet
MATH
Google Scholar
Golubitsky, M. (1972): Primitive actions and maximal subgroups of Lie groups. J. Differ. Geom. 7, No. 1–2, 175–191. Zbl. 265. 22024
MathSciNet
MATH
Google Scholar
Golubitsky, M., Rothschild, B. (1971): Primitive subalgebras of exceptional Lie algebras. Pac. J. Math. 39, No. 2, 371–393. Zbl. 209, 66
MathSciNet
Google Scholar
Gorbatsevich, V. V. (1974): On a class of factorizations of semi-simple Lie groups and Lie algebras. Mat. Sb., Nov. Ser. 95, No. 2, 294–304. Zbl. 311. 22017. English transl.: Math. USSR, Sb. 24, 287–297
Google Scholar
Gorbatsevich, V. V. (1977a): On three-dimensional homogeneous spaces. Sib. Mat. Zh. 18, No. 2, 280–293. Zbl. 373. 14017. English transl.: Sib. Math. J. 18, 200–210
MathSciNet
MATH
Google Scholar
Gorbatsevich, V. V. (1977b): On the classification of four-dimensional compact homogeneous spaces. Usp. Mat. Nauk 32, No. 2, 207–208 (Russian). Zbl. 362. 57020
MATH
Google Scholar
Gorbatsevich, V. V. (1977c): On Lie groups acting transitively on compact solvmanifolds. Izv. Akad. Nauk SSSR, Ser. Mat. 41, No. 2, 285–307. Zbl. 362. 57012. English transl.: Math. USSR, Izv. 11, 271-292.
MathSciNet
MATH
Google Scholar
Gorbatsevich, V. V. (1979): Splittings of Lie groups and their applications to the study of homogeneous spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 43, No. 6, 1127–1157. Zbl. 424. 22006. English transl.: Math. USSR, Izv. 11, 271–292.
MathSciNet
Google Scholar
Gorbatsevich, V. V. (1980): On compact homogeneous spaces of low dimension. In Geom. Metody Zadachakh Algebry Anal. 2, 37–60 (Russian). Zbl. 475. 53043
MathSciNet
Google Scholar
Gorbatsevich, V. V. (1981a): On compact homogeneous spaces with solvable fundamental group I. In Geom. Metody Zadachakh Algebry Anal. 1981, 71–87 (Russian) Zbl. 499. 57015
Google Scholar
Gorbatsevich, V. V. (1981b): On a fibration of a compact homogeneous space. Tr. Mosk. Mat. O.-va 43, 116–141. English transl.: Trans. Mosc. Math. Soc. No. 1, 128–157 (1983). Zbl. 525. 57034
MathSciNet
Google Scholar
Gorbatsevich, V. V. (1981c): Modifications of transitive actions of Lie groups on compact manifolds and their applications. In Vopr. Teor. Grupp Gomologicheskoj Algebry, 131–145 (Russian). Zbl. 506. 57022
Google Scholar
Gorbatsevich, V. V. (1981d): Two fibrations of a compact homogeneous space and some applications. Izv. Vyssh. Uchebn. Zaved., Mat. No. 6, 73–75. Zbl. 492. 57013. English transl.: Sov. Math. 25, No. 6, 73–75
Google Scholar
Gorbatsevich, V. V. (1981e): On compact homogeneous spaces with semi-simple fundamental group I. Sib. Mat. Zh. 22, No. 1, 47–67. Zbl. 486. 57019. English transl.: Sib. Math. J. 22, 34–49
MathSciNet
MATH
Google Scholar
Gorbatsevich, V. V. (1982): On compact homogeneous spaces with solvable fundamental group II. Vopr. Teor. Grupp Gomologicheskoy Algebry, 13–28 (Russian). Zbl. 583. 57014
Google Scholar
Gorbatsevich, V. V. (1983a): On a class of compact homogeneous spaces. Izv. Vyssh. Uchebn. Zaved., Mat. 9, 18–21. Zbl. 564. 57019. English transl.: Sov. Math 27, No. 9, 18–22
MathSciNet
Google Scholar
Gorbatsevich, V. V. (1983b): Compact aspherical homogeneous spaces up to a finite covering. Ann. Global. Anal. Geom. 1, No. 3, 103–118. Zbl. 535. 57024
MathSciNet
MATH
Google Scholar
Gorbatsevich, V. V. (1985): On compact homogeneous spaces with solvable fundamental group III. Vopr. Teor. Grupp Gomologicheskoj Algebry, 93–103 (Russian)
Google Scholar
Gorbatsevich, V. V (1986a): On Lie groups with lattices and their properties. Dokl. Akad. Nauk SSSR 287, No 1, 33–37. English transl.: Sov. Math., Dokl. 33, 321–325. Zbl. 619. 22014
MathSciNet
Google Scholar
Gorbatsevich, V. V. (1986b): On compact homogeneous spaces with semi-simple fundamental group II. Sib. Mat. Zh. 37, No. 5, 38–49. English transl.: Sib. Math. J. 27, 660–669. Zbl. 644. 57006
MathSciNet
Google Scholar
Gorbatsevich, V. V (1988): On some classes of homogeneous spaces close to compact. Dokl. Akad. Nauk SSSR 303, No. 4, 785–788. English transl.: Sov. Math. Dokl. 38, No. 3, 592–596. Zbl. 703. 22006
Google Scholar
Goto, M., Wang, H.-C. (1978): Non-discrete uniform subgroups of semi-simple Lie groups. Math. Ann. 198, No. 4, 259–286. Zbl. 228. 22014
MathSciNet
Google Scholar
Helgason, S. (1962): Differential Geometry and Symmetric Spaces. Academic Press. New York, London. Zbl. 111, 181
MATH
Google Scholar
Hermann, R. (1965): Compactification of homogeneous spaces. I. J. Math. Mech. 14, No. 4, 655–678. Zbl. 141, 196
MathSciNet
MATH
Google Scholar
Hsiang, W. C., Hsiang, W. Y. (1967): Differentiable actions of compact connected classical groups. I. Am. J. Math. 89, No. 3, 705–786. Zbl. 184, 272
MathSciNet
MATH
Google Scholar
Hsiang, W. Y. (1975): Cohomology Theory of Topological Transformation Groups. Springer, Berlin. Zbl. 429. 57011
MATH
Google Scholar
Hsiang, W. Y., Su, J. C. (1968): On the classification of transitive actions on Stiefel manifolds. Trans. Am. Math. Soc. 130, No. 2, 322–336. Zbl. 429. 57011
MathSciNet
MATH
Google Scholar
Husemoller, D. (1966): Fibre Bundles. McGraw-Hill, New York. Zbl. 199, 271
MATH
Google Scholar
Ibragimov, N. Kh. (1983): Transformation Groups in Mathematical Physics. Nauka, Moscow. Zbl. 529. 53014. English transl.: Reidel, Dordrecht 1985
MATH
Google Scholar
Iwahori, N., Sugiura, M. (1966): A duality theorem for homogeneous manifolds of compact Lie groups. Osaka J. Math. 3, No. 1, 139–153. Zbl. 158, 277
MathSciNet
MATH
Google Scholar
Jänich, K. (1968): Differenzierbare G-Mannigfaltigkeiten. Lect. Notes Math. 59, Springer, Berlin. Zbl. 159, 537
Google Scholar
Johnson, R. (1972): Presentation of solvmanifolds. Am. J. Math. 94, No. 1, 82–102.
MATH
Google Scholar
Kamerich, B. N. P. (1977): Transitive transformation groups of products of two spheres. Krips Repro. Meppel.
Google Scholar
Kantor, I. L. (1974): The double ratio of four points and other invariants on homogeneous spaces with parabolic stabilizers. Seminar on Vector and tensor analysis 17, 250–313 (Russian)
MathSciNet
MATH
Google Scholar
Karpelevich, F. I. (1953): Surfaces of transitivity of a semi-simple subgroup of the group of motions of a symmetric space. Dokl. Akad. Nauk SSSR 93, 401–404 (Russian)
MATH
Google Scholar
Karpelevich, F. I. (1956): On fibrations of homogeneous spaces. Uspehi Mat Nauk 11, No. 3, 131–138 (Russian)
MathSciNet
MATH
Google Scholar
Kaup, W. (1967): Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math. 3, No. 1, 43–70
MathSciNet
MATH
Google Scholar
Kim Sen En, Morozov, V. V. (1955): On imprimitive groups of the three-dimensional complex space. Uch. Zap. Kazh. Univ. 115, No. 14, 69–85 (Russian)
Google Scholar
Kobayashi, S. (1972): Transformation Groups in Differerntial Geometry. Springer, Berlin. Zbl. 246. 53031
Google Scholar
Komrakov, B. P. (1990): Maximal subalgebras of semisimple real Lie algebras and a problem of Sophus Lie. Dokl. Akad. Nauk SSSR 311, No. 3, 528–532. English transl.: Sov. Math., Dokl. 41, No. 2, 269–273
MathSciNet
Google Scholar
Komrakov, B. P. (1991): Primitive actions and the problem of Sophus Lie. Vysheishaya Shkola Minsk (Russian)
Google Scholar
Koszul, J. L. (1978): Variante d’un théorème de H. Ozeki. Osaka J. Math. 15, 547–551. Zbl. 395. 17008
MathSciNet
MATH
Google Scholar
Kreck, M., Stolz, S. (1988): A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds with SU(3) × SU(2) × U(1)-symmetry. Ann. Math., II. Ser. 127, No. 2, 373–388. Zbl. 649. 53029
MathSciNet
MATH
Google Scholar
Lie, S., Engel, F. (1888): Theorie der Transformationsgruppen I. Teubner, Leipzig. Jbuch. 21, 356
Google Scholar
Lie, S., Engel, F. (1890): Theorie der Transformationsgruppen II. Teubner, Leipzig. Jbuch. 23, 364
Google Scholar
Lie, S., Engel, F. (1893): Theorie der Transformationsgruppen III. Teubner, Leipzig. Jbuch 25, 632
Google Scholar
Lukatskij, A. M. (1971): Spherical functions on G-spaces of non-compact Lie groups. Uspehi Mat. Nauk 26, No. 5, 212–213 (Russian).
Google Scholar
Maltsev, A. I. (1949): On a class of homogeneous spaces. Izv. Akad. Nauk SSSR. Ser. Mat. 13, No. 1, 9–32 (Russian). Zbl. 34, 17
Google Scholar
Malyshev, F. M. (1975): Decompositions of almost compact Lie algebras. Vestn. Mosk. Univ., Ser. I 30 No. 2, 87–90. Zbl. 297. 17003. English transl.: Mosc. Univ. Math. Bull. 30, No. 1/2, 143–146
MathSciNet
MATH
Google Scholar
Malyshev, F. M. (1978): On decompositions of nilpotent Lie algebras. Mat. Zametki 23, No. 1, 27–30. Zbl. 373. 17005. English transl.: Math. Notes 23, 17–18
MathSciNet
MATH
Google Scholar
Manturov, O. V. (1966): Homogeneous Riemannian spaces with irreducible rotation group. Tr. Semin. Vektorn. Tenzorn. Anal. 13, 68–145 (Russian). Zbl. 173, 241
MathSciNet
MATH
Google Scholar
Massey, W. (1967): Algebraic Topology: An Introduction. Harcourt, Brace & World, Inc., New York. Zbl. 153, 259
MATH
Google Scholar
Mather, J. N. (1977): Differentiable invariants. Topology 16, No. 2, 145–155. Zbl. 376. 58002
MathSciNet
MATH
Google Scholar
Merzlyakov, Yu. I. (1980): Rational Groups. Nauka, Moscow (Russian). Zbl. 518. 20032
MATH
Google Scholar
Milovanov, M. B. (1980): Description of solvable Lie groups with a given uniform subgroup. Mat. Sb., Nov. Ser. 113, No. 1, 98–117 (Russian). Zbl. 496. 22013
MathSciNet
Google Scholar
Mkhitaryan, V. G. (1981): On a class of homogeneous spaces of compact Lie groups. Usp. Mat. Nauk 36, No. 2, 193–194. English transl.: Russ. Math. Surv. 36, No. 2, 185–186. Zbl. 502. 57023
MathSciNet
Google Scholar
Montgomery, D., Samelson, H. (1943): Transformation groups on spheres. Ann. Math., II. Ser. 44, No. 3, 454–470
MathSciNet
MATH
Google Scholar
Montgomery, D., Zippin, L. (1955): Topological Transformation Groups. Wiley, New York. Zbl. 68, 19
MATH
Google Scholar
Moore, C., C. (1984): Cocompact subgroups of semi-simple Lie groups. J. Reine Angew. Math. 350, 173–177. Zbl. 525. 22017
MathSciNet
MATH
Google Scholar
Morozov, V. V. (1939): On primitive groups. Mat. Sb., Nov. Ser. 5, No. 2, 355–390 (Russian). Zbl. 23, 15
MATH
Google Scholar
Mostow, G. D. (1950): The extensibility of local Lie groups of transformations and groups on surfaces. Ann. Math., II. Ser. 52, No. 3, 606–636. Zbl. 40, 152
MathSciNet
MATH
Google Scholar
Mostow, G. D. (1954): Factor spaces of solvable groups. Ann. Math., II. Ser. 60, No. 1, 1–27. Zbl. 57, 261
MathSciNet
MATH
Google Scholar
Mostow, G. D. (1955a): Some new decomposition theorems for semi-simple groups. Mem. Am. Math. Soc. 14, 31–54. Zbl. 64, 259
MathSciNet
MATH
Google Scholar
Mostow, G. D. (1955b): On covariant fiberings of Klein spaces I. Am. J. Math. 77, No. 2, 247–278. Zbl. 67, 160
MathSciNet
MATH
Google Scholar
Mostow, G. D. (1957): Equivariant embeddings in Euclidean space. Ann. Math., II. Ser. 65, No. 3, 432–446. Zbl. 80, 167
MathSciNet
MATH
Google Scholar
Mostow, G. D. (1961): On maximal subgroups in real Lie groups. Ann. Math., II. Ser. 74, No. 3, 503–517. Zbl. 80, 167
MathSciNet
MATH
Google Scholar
Mostow, G. D. (1962a): Homogeneous spaces with finite invariant measure. Ann. Math., II. Ser. 75, No. 1, 17–37. Zbl. 115, 257
MathSciNet
MATH
Google Scholar
Mostow, G. D. (1962b): Covariant fiberings of Klein spaces II. Am. J. Math. 84, No. 3, 466–474. Zbl. 123, 163
MathSciNet
MATH
Google Scholar
Mostow, G. D. (1971): Arithmetic subgroups of groups with radical. Ann. Math., II. Ser. 93, No. 3, 409–438. Zbl. 212, 364
MathSciNet
Google Scholar
Mostow, G. D. (1975): On the topology of homogeneous spaces of finite measure. Symp. Math. Ist. Naz. Alta Mat. 16, Acad. Press, 375–398. Zbl. 319. 22008
Google Scholar
Nagano, T. (1965): Transformation groups on compact symmetric spaces. Trans. Am. Math. Soc. 118, 428–453. Zbl. 151, 288
MathSciNet
MATH
Google Scholar
Nakamura, I. (1975): Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, No. 1, 85–112. Zbl. 297. 32019
MATH
Google Scholar
Nazaryan, R. O. (1975a): On factorization of simple real Lie groups. Izv. Akad. Nauk Arm. SSR, 10, No. 1, 3–22 (Russian). Zbl. 308. 22011
MATH
Google Scholar
Nazaryan, R. O. (1975b): Minimal factorizations of simple real Lie groups. Izv. Akad. Nauk Arm. SSR, Mat. 10, No. 5, 455–477 (Russian). Zbl. 335. 22008
MATH
Google Scholar
Nazaryan, R. O. (1981): More about factorizations of simple real Lie groups. In Vopr. Teor. Grupp Gomologicheskoj Algebry, 69–79 (Russian)
Google Scholar
Onishchik, A. L. (1960): Complex envelopes of compact homogeneous spaces. Dokl. Akad. Nauk SSSR 130, No. 4, 726–729 (Russian). Zbl. 90, 94
Google Scholar
Onishchik, A. L. (1962): Inclusion relations between transitive compact transformation groups. Tr. Mosk. Mat. O-va, 11, 199–242. Zbl. 192, 126. English transl.: Transl., II. Ser., Am. Math. Soc. 50, 5–58 (1966).
MATH
Google Scholar
Onishchik, A. L. (1963): On transitive compact transformation groups. Mat. Sb., Nov. Ser. 60, No. 4, 447–485. Zbl. 203, 263. English transl.: Transl., II. Ser., Am. Math. Soc. 55, 153–194 (1966).
Google Scholar
Onishchik, A. L. (1966): On Lie groups, acting transitively on compact manifolds. I, Mat. Sb., Nov. Ser. 71, No. 4, 483–494. Zbl. 198, 289. English transl.: Transl., II. Ser., Am. Math. Soc. 73, 59–72 (1968)
Google Scholar
Onishchik, A. L. (1967): On Lie groups, acting transitively on compact manifolds. II, Mat. Sb., Nov. Ser. 74, No. 3, 398–416. Zbl. 198, 289. English transl.: Math. USSR, Sb. 3, 373–388 (1968)
Google Scholar
Onishchik, A. L. (1968): On Lie groups, acting transitively on compact manifolds. III, Mat. Sb., Nov. Ser. 75, No. 2, 255–263. Zbl. 198, 290. English transl.: Math. USSR, Sb. 4, 233–240 (1969)
Google Scholar
Onishchik, A. L. (1969): Decompositions of reductive Lie groups. Mat. Sb., Nov. Ser. 80, No. 4, 553–599. Zbl. 222. 22011. English transl.: Math. USSR, Sb. 9, 515–554
Google Scholar
Onishchik, A. L. (1970): Lie groups which act transitively on Grassmann and Stiefel manifolds. Mat. Sb., Nov. Ser. 83, No. 3, 407–428. Zbl. 206, 317. English transl.: Math. USSR, Sb. 12, 405–427
Google Scholar
Onishchik, A. L. (1976): On invariants and almost invariants of compact Lie groups of transformations. Tr. Mosk. Mat. O.-va 35, 235–264. Zbl. 406. 57025. English transl.: Trans. Mosc. Math. Soc, 35, 237–267
MATH
Google Scholar
Onishchik, A. L. (1977, 1981): On extensions of transitive transformation groups. Izv. Vyssh. Uchebn. Zaved., Mat. No. 3, 53–65. Zbl. 362. 57007. Corrections. (1981) No. 7, 88. Zbl. 474. 57021. English transl.: Sov. Math. 21, 42–51, and 25, 104–105
Google Scholar
Onishchik, A. L. (1979): Remark on invariants of groups generated by reflections. In Vopr. Teor. Grupp Gomologicheskoj Algebry, 138–141. Zbl. 435.20026. English transl.: Selecta Math. Sov. 3 (1983/84), 239–241
Google Scholar
Oniščik (= Onishchik), A. L. (1981): Parabolic factorizations of semi-simple algebraic groups. Math. Nachr. 104, 315–329. Zbl. 531. 20023
MathSciNet
MATH
Google Scholar
Oniščik (= Onishchik), A. L. (1988): On the centre of a transitive semisimple Lie group. Ann. Global Anal. Geom. 6, No. 3, 265–272. Zbl. 685.57023
MathSciNet
MATH
Google Scholar
Ovsyannikov, L. V. (1978): Groups Analysis of Differential Equations. Nauka, Moscow (Russian). Zbl. 484.58001
Google Scholar
Palais, R. S. (1957 a): A Global Formulation of the Lie Theory of Transformation Groups. Mem. Am. Math. Soc. 22. Zbl. 178, 265
Google Scholar
Palais, R. S. (1957 b): Imbedding of compact, differentiable transformation groups in orthogonal representations. J. Math. Mech. 6, No. 5, 673–678. Zbl. 86, 26
MathSciNet
MATH
Google Scholar
Palais, R. S. (1960): The Classification of G-Spaces. Mem. Am. Math. Soc. 36. Zbl. 119, 384
Google Scholar
Palais, R. S. (1968): Foundations of Global Non-linear Analysis. Benjamin. New York-Amsterdam. Zbl. 164, 111
MATH
Google Scholar
Palais, R. S., Stewart, T. S. (1961a): Torus bundles over a torus. Proc. Am. Math. Soc. 12, No. 1, 26–29. Zbl. 102, 387
MathSciNet
MATH
Google Scholar
Palais, R. S., Stewart, T. S. (1961b): The cohomology of differentiable transformation groups. Am. J. Math. 83, No. 4, 623–644. Zbl. 104, 177
MathSciNet
MATH
Google Scholar
Pontryagin, L. S. (1984): Topological Groups. 4th edition. Nauka, Moscow. Zbl. 534.22001. German transl.: Teubner, Leipzig, 1957/1958
MATH
Google Scholar
Raghunathan, M. (1972): Discrete Subgroups of Lie Groups. Springer, Berlin. Zbl. 254. 22005
MATH
Google Scholar
Samelson, H. (1952): Topology of Lie groups. Bull. Am. Math. Soc. 58, No. 1, 2–37. Zbl. 47, 167
MathSciNet
MATH
Google Scholar
Samelson, H. (1958): On curvature and characteristic of homogeneous spaces. Mich. Math. J. 5, No. 1, 13–18. Zbl. 84, 374
MathSciNet
MATH
Google Scholar
Scheerer, H. (1971): Transitive actions on Hopf homogeneous spaces. Manuscr. Math. 4, No. 2, 99–134. Zbl. 212, 286
MathSciNet
MATH
Google Scholar
Schneider, V. (1973): Transitive actions on highly connected spaces. Proc. Amer. Math. Soc. 38, No. 1, 179–185
MathSciNet
MATH
Google Scholar
Schneider, V. (1975): Homogeneous spaces with vanishing Steenrod squaring operations. Proc. Amer. Math. Soc. 50, 451–458
MathSciNet
MATH
Google Scholar
Schultz, R. (1984): Nonlinear analogs of linear group actions on spheres. Bull. Am. Math. Soc, New Ser. 11, No. 2, 263–285. Zbl. 564. 57001
MATH
Google Scholar
Schwarz, G. W. (1975): Smooth functions invariant under the action of a compact Lie group. Topology 14, No. 1, 63–68. Zbl. 297.57015
MathSciNet
MATH
Google Scholar
Serre, J-P. (1951): Homologie singulière des espaces fibrés. Applications. Ann. Math., II. Ser. 54, No. 3, 425–505. Zbl. 45, 260
MATH
Google Scholar
Serre, J-P. (1971): Cohomologie des Groupes Discrets. Ann. Math. Stud., No. 70, Princeton Univ. Press, Princeton, 77–169. Zbl. 235.22020
Google Scholar
Shchetinin, A. (1988): On a class of compact homogeneous spaces I. Ann. Global Anal. Geom. 6, No. 2, 119–140. Zbl. 635.57025
MathSciNet
MATH
Google Scholar
Shchetinin, A. (1990): On a class of compact homogeneous spaces II. Ann. Global Anal. Geom. 8, No. 3, 227–247. Zbl. 718.57014
MathSciNet
MATH
Google Scholar
Steenrod, N (1951): The Topology of Fibre Bundles. Princeton Univ. Press, Princeton. Zbl. 54, 71
MATH
Google Scholar
Sternheimer, D. (1968): Extensions et unifications d’algèbres de Lie. J. Math. Pures Appl., IX. Sér. 47, No. 3, 247–287. Zbl. 244.17015+
MathSciNet
MATH
Google Scholar
Sulanke, R., Wintgen, P. (1972): Differentialgeometrie und Faserbündel. Deutscher Verlag des Wissenschaften, Berlin. Zbl. 327. 53020
Google Scholar
Tits, J. (1962): Espaces homogènes complexes compacts. Comment Math. Helv. 37, No. 2, 111–120. Zbl. 108, 363
MathSciNet
MATH
Google Scholar
Vinberg, E. B. (1961): The Morozov-Borel theorem for real Lie groups. Dokl. Akad Nauk SSSR 141, No. 2, 270–273. English transl.: Sov. Math., Dokl. 2, 1416–1419. Zbl. 112, 25
MathSciNet
Google Scholar
Vinberg, E. B. (1963): Lie groups and homogeneous spaces. Itogi Nauki Tekh., Ser. Algebra, Topologiya. 1962, 5–32 (Russian). Zbl. 132, 22
Google Scholar
Vishik, E. Ya. (1973): Lie groups, transitive on simply connected compact manifolds. Mat. Sb., Nov. Ser. 92, No. 4, 564–570. Zbl. 289. 22007. English transl.: Math. USSR, Sb. 21, 558–564
Google Scholar
Vladimirov, S. A. (1979): Groups of Symmetries of Differential Equations and Relativistic Fields. Atomizdat, Moscow. Zbl. 399. 58021
Google Scholar
Wang, H.-C. (1954): Closed manifolds with homogeneous complex structures. Am. J. Math. 76, No. 1, 1–32. Zbl. 55, 166
MATH
Google Scholar
Wang, H.-C. (1956): Discrete subgroups of solvable Lie groups. Ann. Math., II. Ser. 64, No. 1, 1–19. Zbl. 73, 285
MATH
Google Scholar
Warner, F. W. (1983): Foundations of Differentiable Manifolds and Lie Groups. Springer, New York. Zbl. 516. 58001
MATH
Google Scholar
Wasserman, A. (1969): Equivariant differential topology. Topology 8, No. 2, 127–150. Zbl. 215, 247
MathSciNet
MATH
Google Scholar
Wells, R. O. (1973): Differential Analysis on Complex Manifolds. Prentice Hall, Englewood Cliffs. Zbl. 262. 32005. 2nd ed. (1980) Springer, New York. Zbl. 435. 32004
MATH
Google Scholar
Wolf, J. A. (1968): The geometry and structure of isotropy-irreducible homogeneous spaces. Acta Math. 120, 59–148. Zbl. 157, 521
MathSciNet
MATH
Google Scholar
Wolf, J. A. (1972): Spaces of Constant Curvature. Univ. of California Press, Berkeley. Zbl. 162, 533. 3rd. ed. (1974) Publish or Perish, Boston. Zbl. 281. 53034
Google Scholar
Zabotin, Ya. I. (1958a): Semisimple transitive imprimitive groups of the four-dimensional complex space. Izv. Vyssh. Uchebn. Zaved., Mat. 1958, No. 4, 67–79 (Russian). Zbl. 125, 17
Google Scholar
Zabotin, Ya. I. (1958b): On transitive imprimitive groups with radical in the four-dimensional complex space. Izv. Vyssh. Uchebn. Zaved., Mat. 1958, No. 5, 73–85 (Russian). Zbl. 125, 17
Google Scholar