Advertisement

Actions of Lie Groups on Low-dimensional Manifolds

  • A. L. Onishchik
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 20)

Abstract

This section is devoted to results on classification of analytic local actions of Lie groups on open subsets of the spaces ℝ n and ℂn for small n. In the cases n = 1, 2 the classification was already obtained by Lie (see, for example, Vladimirov 1979, Chebotarev 1940).

Keywords

Homogeneous Space Transformation Group Transitive Action Homogeneous Manifold English Trans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhiezer, D. N. (1974): Compact complex homogeneous spaces with solvable fundamental group. Izv. Akad. Nauk SSSR, Ser. Mat. 38, No. 1, 59–80. English transl.: Math. USSR, Izv. 8, 61–83. Zbl.309. 22008MathSciNetGoogle Scholar
  2. Alekseevskij, D. B. (1974): Lie groups and homogeneous spaces. Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 11, 37–123. Zbl. 296. 22010. English transl.: J. Sov. Math. 4, 483–539Google Scholar
  3. Alekseevskij, D. B. (1979): On proper actions of Lie groups. Usp. Mat. Nauk 34, No. 1, 219–220. Zbl. 422. 53020. English transl.: Russ. Math. Surv. 34. No. 1, 215–216zbMATHGoogle Scholar
  4. Alekseevskij, D. B. (1982): Lie groups. Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 20, 153–192. Zbl. 532. 22010. English transl.: J. Sov. Math. 28, 924–949 (1985)Google Scholar
  5. Auslander, L. (1973): An exposition of the structure of solvmanifolds. I, II. Bull. Am. Math. Soc. 79, No. 2, 227–261, 262–285. Zbl. 265. 22016 and Zbl. 265. 22017MathSciNetzbMATHGoogle Scholar
  6. Auslander, L., Green, L., Hahn, F. (1963): Flows on Homogeneous Spaces. Ann. Math. Stud., No. 53, Princeton Univ. Press, Princeton. Zbl. 106, 368Google Scholar
  7. Auslander, L., Szczarba, R. (1962): Characteristic classes of compact solvmanifolds. Ann. Math., II. Ser., 76, No. 1, 1–8. Zbl. 114, 399MathSciNetzbMATHGoogle Scholar
  8. Auslander, L., Szczarba, R. (1975a): Vector bundles over tori and noncompact solvmanifolds. Am. J. Math. 97, No. 1, 260–281. Zbl. 303. 22006MathSciNetzbMATHGoogle Scholar
  9. Auslander, L., Szczarba, R. (1975b): On free nilmanifolds and their associated non-compact solvmanifolds. Duke Math. J. 42, No. 2, 357–369. Zbl. 333. 22005MathSciNetzbMATHGoogle Scholar
  10. Auslander, L., Tolimieri, R. (1975): Abelian harmonic analysis, theta functions and function algebras on a nilmanifold. Lect. Notes Math. 436, Springer, Berlin. Zbl. 321. 43012Google Scholar
  11. Barth, W., Otte, M. (1969): Über fast-uniforme Untergruppen komplexer Liegruppen und auflösbare komplexe Mannigfaltigkeiten. Comment. Math. Helv. 44, No. 3, 269–281. Zbl. 172, 378MathSciNetzbMATHGoogle Scholar
  12. Barut, A. O., Raczka, R. (1977): Theory of Group Representations and Applications. Polish Scient. Publishers, WarsawGoogle Scholar
  13. Borel, A. (1950): Le plan projectif des octaves et les sphères comme espaces homogènes. C. R. Acad. Sci., Paris 230, No. 15, 1378–1380. Zbl. 41, 522MathSciNetzbMATHGoogle Scholar
  14. Borel, A. (1953): Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math., II. Ser. 57, No. 1, 115–207. Zbl. 52, 400MathSciNetzbMATHGoogle Scholar
  15. Borel, A. (1960): Seminar on transformation groups. Ann. Math. Stud. No. 46, Princeton Univ. Press, Princeton. Zbl. 91, 372Google Scholar
  16. Borel, A., Tits, J. (1965): Groupes réductifs. Publ. Math., Inst. Hautes Etud. Sci. 27, 659–755. Zbl. 145, 174zbMATHGoogle Scholar
  17. Bourbaki, N. (1960): Topologie générale, Ch.3, 4. 3-ème ed. Hermann. Paris. Zbl. 102, 271zbMATHGoogle Scholar
  18. Bourbaki, N. (1968): Groupes et algèbres de Lie. Ch.4–l6. Hermann, Paris. Zbl. 186, 330zbMATHGoogle Scholar
  19. Bourbaki, N. (1982): Groupes et algèbres de Lie, Ch.9. Masson, Paris. Zbl. 505. 22006zbMATHGoogle Scholar
  20. Bredon, G. E. (1972): Introduction To Compact Transformation Groups. Acad. Press, New York, London. Zbl. 246. 57017zbMATHGoogle Scholar
  21. Chebotarev, N. G. (1940): Theory of Lie Groups. GITTL, Moscow, Leningrad (Russian)Google Scholar
  22. Chevalley, C. (1946): Theory of Lie Groups. Vol.I. Princeton Univ. Press, PrincetonzbMATHGoogle Scholar
  23. D’Atri, J. E., Ziller, W. (1979): Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups. Mem. Am. Math. Soc. 18, No. 215. Zbl. 404. 53044Google Scholar
  24. Dao Van Tra (1975): On spherical sections on a compact homogeneous space. Usp. Mat. Nauk 30, No. 5, 203–204 (Russian). Zbl. 321. 57026zbMATHGoogle Scholar
  25. Dao Van Tra (1981): On extensions of groups acting transitively on compact manifolds. In Geom. Metody Zadachakh Algebry Anal., 87–106 (Russian). Zbl. 485. 22019Google Scholar
  26. Dubrovin, B. A., Novikov, S. P., Fomenko, A. T. (1980): Modern Geometry. Nauka, Moscow. Zbl. 433. 53001. English transl.: Grad. Texts Math. 93, 1984, and 104, 1985. Springer, New YorkzbMATHGoogle Scholar
  27. Dynkin, E. B., Onishchik, A. L. (1955): Compact global Lie groups. Usp. Mat. Nauk 10, No. 4, 3–74. Zbl. 65, 262. English transl.: Amer. Math. Soc. Transl. 21 (1962), 119–192zbMATHGoogle Scholar
  28. Eisenhart, L. P. (1933): Continuous Groups of Transformations. Princeton University Press, Princeton; Humphrey Milford, London. Zbl. 8, 108zbMATHGoogle Scholar
  29. Fujimoto, H., (1968): On the holomorphic automorphism groups of complex spaces. Nagoya Math. J. 33, 85–106. Zbl. 165, 404MathSciNetzbMATHGoogle Scholar
  30. Golubitsky, M. (1972): Primitive actions and maximal subgroups of Lie groups. J. Differ. Geom. 7, No. 1–2, 175–191. Zbl. 265. 22024MathSciNetzbMATHGoogle Scholar
  31. Golubitsky, M., Rothschild, B. (1971): Primitive subalgebras of exceptional Lie algebras. Pac. J. Math. 39, No. 2, 371–393. Zbl. 209, 66MathSciNetGoogle Scholar
  32. Gorbatsevich, V. V. (1974): On a class of factorizations of semi-simple Lie groups and Lie algebras. Mat. Sb., Nov. Ser. 95, No. 2, 294–304. Zbl. 311. 22017. English transl.: Math. USSR, Sb. 24, 287–297Google Scholar
  33. Gorbatsevich, V. V. (1977a): On three-dimensional homogeneous spaces. Sib. Mat. Zh. 18, No. 2, 280–293. Zbl. 373. 14017. English transl.: Sib. Math. J. 18, 200–210MathSciNetzbMATHGoogle Scholar
  34. Gorbatsevich, V. V. (1977b): On the classification of four-dimensional compact homogeneous spaces. Usp. Mat. Nauk 32, No. 2, 207–208 (Russian). Zbl. 362. 57020zbMATHGoogle Scholar
  35. Gorbatsevich, V. V. (1977c): On Lie groups acting transitively on compact solvmanifolds. Izv. Akad. Nauk SSSR, Ser. Mat. 41, No. 2, 285–307. Zbl. 362. 57012. English transl.: Math. USSR, Izv. 11, 271-292.MathSciNetzbMATHGoogle Scholar
  36. Gorbatsevich, V. V. (1979): Splittings of Lie groups and their applications to the study of homogeneous spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 43, No. 6, 1127–1157. Zbl. 424. 22006. English transl.: Math. USSR, Izv. 11, 271–292.MathSciNetGoogle Scholar
  37. Gorbatsevich, V. V. (1980): On compact homogeneous spaces of low dimension. In Geom. Metody Zadachakh Algebry Anal. 2, 37–60 (Russian). Zbl. 475. 53043MathSciNetGoogle Scholar
  38. Gorbatsevich, V. V. (1981a): On compact homogeneous spaces with solvable fundamental group I. In Geom. Metody Zadachakh Algebry Anal. 1981, 71–87 (Russian) Zbl. 499. 57015Google Scholar
  39. Gorbatsevich, V. V. (1981b): On a fibration of a compact homogeneous space. Tr. Mosk. Mat. O.-va 43, 116–141. English transl.: Trans. Mosc. Math. Soc. No. 1, 128–157 (1983). Zbl. 525. 57034MathSciNetGoogle Scholar
  40. Gorbatsevich, V. V. (1981c): Modifications of transitive actions of Lie groups on compact manifolds and their applications. In Vopr. Teor. Grupp Gomologicheskoj Algebry, 131–145 (Russian). Zbl. 506. 57022Google Scholar
  41. Gorbatsevich, V. V. (1981d): Two fibrations of a compact homogeneous space and some applications. Izv. Vyssh. Uchebn. Zaved., Mat. No. 6, 73–75. Zbl. 492. 57013. English transl.: Sov. Math. 25, No. 6, 73–75Google Scholar
  42. Gorbatsevich, V. V. (1981e): On compact homogeneous spaces with semi-simple fundamental group I. Sib. Mat. Zh. 22, No. 1, 47–67. Zbl. 486. 57019. English transl.: Sib. Math. J. 22, 34–49MathSciNetzbMATHGoogle Scholar
  43. Gorbatsevich, V. V. (1982): On compact homogeneous spaces with solvable fundamental group II. Vopr. Teor. Grupp Gomologicheskoy Algebry, 13–28 (Russian). Zbl. 583. 57014Google Scholar
  44. Gorbatsevich, V. V. (1983a): On a class of compact homogeneous spaces. Izv. Vyssh. Uchebn. Zaved., Mat. 9, 18–21. Zbl. 564. 57019. English transl.: Sov. Math 27, No. 9, 18–22MathSciNetGoogle Scholar
  45. Gorbatsevich, V. V. (1983b): Compact aspherical homogeneous spaces up to a finite covering. Ann. Global. Anal. Geom. 1, No. 3, 103–118. Zbl. 535. 57024MathSciNetzbMATHGoogle Scholar
  46. Gorbatsevich, V. V. (1985): On compact homogeneous spaces with solvable fundamental group III. Vopr. Teor. Grupp Gomologicheskoj Algebry, 93–103 (Russian)Google Scholar
  47. Gorbatsevich, V. V (1986a): On Lie groups with lattices and their properties. Dokl. Akad. Nauk SSSR 287, No 1, 33–37. English transl.: Sov. Math., Dokl. 33, 321–325. Zbl. 619. 22014MathSciNetGoogle Scholar
  48. Gorbatsevich, V. V. (1986b): On compact homogeneous spaces with semi-simple fundamental group II. Sib. Mat. Zh. 37, No. 5, 38–49. English transl.: Sib. Math. J. 27, 660–669. Zbl. 644. 57006MathSciNetGoogle Scholar
  49. Gorbatsevich, V. V (1988): On some classes of homogeneous spaces close to compact. Dokl. Akad. Nauk SSSR 303, No. 4, 785–788. English transl.: Sov. Math. Dokl. 38, No. 3, 592–596. Zbl. 703. 22006Google Scholar
  50. Goto, M., Wang, H.-C. (1978): Non-discrete uniform subgroups of semi-simple Lie groups. Math. Ann. 198, No. 4, 259–286. Zbl. 228. 22014MathSciNetGoogle Scholar
  51. Helgason, S. (1962): Differential Geometry and Symmetric Spaces. Academic Press. New York, London. Zbl. 111, 181zbMATHGoogle Scholar
  52. Hermann, R. (1965): Compactification of homogeneous spaces. I. J. Math. Mech. 14, No. 4, 655–678. Zbl. 141, 196MathSciNetzbMATHGoogle Scholar
  53. Hsiang, W. C., Hsiang, W. Y. (1967): Differentiable actions of compact connected classical groups. I. Am. J. Math. 89, No. 3, 705–786. Zbl. 184, 272MathSciNetzbMATHGoogle Scholar
  54. Hsiang, W. Y. (1975): Cohomology Theory of Topological Transformation Groups. Springer, Berlin. Zbl. 429. 57011zbMATHGoogle Scholar
  55. Hsiang, W. Y., Su, J. C. (1968): On the classification of transitive actions on Stiefel manifolds. Trans. Am. Math. Soc. 130, No. 2, 322–336. Zbl. 429. 57011MathSciNetzbMATHGoogle Scholar
  56. Husemoller, D. (1966): Fibre Bundles. McGraw-Hill, New York. Zbl. 199, 271zbMATHGoogle Scholar
  57. Ibragimov, N. Kh. (1983): Transformation Groups in Mathematical Physics. Nauka, Moscow. Zbl. 529. 53014. English transl.: Reidel, Dordrecht 1985zbMATHGoogle Scholar
  58. Iwahori, N., Sugiura, M. (1966): A duality theorem for homogeneous manifolds of compact Lie groups. Osaka J. Math. 3, No. 1, 139–153. Zbl. 158, 277MathSciNetzbMATHGoogle Scholar
  59. Jänich, K. (1968): Differenzierbare G-Mannigfaltigkeiten. Lect. Notes Math. 59, Springer, Berlin. Zbl. 159, 537Google Scholar
  60. Johnson, R. (1972): Presentation of solvmanifolds. Am. J. Math. 94, No. 1, 82–102.zbMATHGoogle Scholar
  61. Kamerich, B. N. P. (1977): Transitive transformation groups of products of two spheres. Krips Repro. Meppel.Google Scholar
  62. Kantor, I. L. (1974): The double ratio of four points and other invariants on homogeneous spaces with parabolic stabilizers. Seminar on Vector and tensor analysis 17, 250–313 (Russian)MathSciNetzbMATHGoogle Scholar
  63. Karpelevich, F. I. (1953): Surfaces of transitivity of a semi-simple subgroup of the group of motions of a symmetric space. Dokl. Akad. Nauk SSSR 93, 401–404 (Russian)zbMATHGoogle Scholar
  64. Karpelevich, F. I. (1956): On fibrations of homogeneous spaces. Uspehi Mat Nauk 11, No. 3, 131–138 (Russian)MathSciNetzbMATHGoogle Scholar
  65. Kaup, W. (1967): Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math. 3, No. 1, 43–70MathSciNetzbMATHGoogle Scholar
  66. Kim Sen En, Morozov, V. V. (1955): On imprimitive groups of the three-dimensional complex space. Uch. Zap. Kazh. Univ. 115, No. 14, 69–85 (Russian)Google Scholar
  67. Kobayashi, S. (1972): Transformation Groups in Differerntial Geometry. Springer, Berlin. Zbl. 246. 53031Google Scholar
  68. Komrakov, B. P. (1990): Maximal subalgebras of semisimple real Lie algebras and a problem of Sophus Lie. Dokl. Akad. Nauk SSSR 311, No. 3, 528–532. English transl.: Sov. Math., Dokl. 41, No. 2, 269–273MathSciNetGoogle Scholar
  69. Komrakov, B. P. (1991): Primitive actions and the problem of Sophus Lie. Vysheishaya Shkola Minsk (Russian)Google Scholar
  70. Koszul, J. L. (1978): Variante d’un théorème de H. Ozeki. Osaka J. Math. 15, 547–551. Zbl. 395. 17008MathSciNetzbMATHGoogle Scholar
  71. Kreck, M., Stolz, S. (1988): A diffeomorphism classification of 7-dimensional homogeneous Einstein manifolds with SU(3) × SU(2) × U(1)-symmetry. Ann. Math., II. Ser. 127, No. 2, 373–388. Zbl. 649. 53029MathSciNetzbMATHGoogle Scholar
  72. Lie, S., Engel, F. (1888): Theorie der Transformationsgruppen I. Teubner, Leipzig. Jbuch. 21, 356Google Scholar
  73. Lie, S., Engel, F. (1890): Theorie der Transformationsgruppen II. Teubner, Leipzig. Jbuch. 23, 364Google Scholar
  74. Lie, S., Engel, F. (1893): Theorie der Transformationsgruppen III. Teubner, Leipzig. Jbuch 25, 632Google Scholar
  75. Lukatskij, A. M. (1971): Spherical functions on G-spaces of non-compact Lie groups. Uspehi Mat. Nauk 26, No. 5, 212–213 (Russian).Google Scholar
  76. Maltsev, A. I. (1949): On a class of homogeneous spaces. Izv. Akad. Nauk SSSR. Ser. Mat. 13, No. 1, 9–32 (Russian). Zbl. 34, 17Google Scholar
  77. Malyshev, F. M. (1975): Decompositions of almost compact Lie algebras. Vestn. Mosk. Univ., Ser. I 30 No. 2, 87–90. Zbl. 297. 17003. English transl.: Mosc. Univ. Math. Bull. 30, No. 1/2, 143–146MathSciNetzbMATHGoogle Scholar
  78. Malyshev, F. M. (1978): On decompositions of nilpotent Lie algebras. Mat. Zametki 23, No. 1, 27–30. Zbl. 373. 17005. English transl.: Math. Notes 23, 17–18MathSciNetzbMATHGoogle Scholar
  79. Manturov, O. V. (1966): Homogeneous Riemannian spaces with irreducible rotation group. Tr. Semin. Vektorn. Tenzorn. Anal. 13, 68–145 (Russian). Zbl. 173, 241MathSciNetzbMATHGoogle Scholar
  80. Massey, W. (1967): Algebraic Topology: An Introduction. Harcourt, Brace & World, Inc., New York. Zbl. 153, 259zbMATHGoogle Scholar
  81. Mather, J. N. (1977): Differentiable invariants. Topology 16, No. 2, 145–155. Zbl. 376. 58002MathSciNetzbMATHGoogle Scholar
  82. Merzlyakov, Yu. I. (1980): Rational Groups. Nauka, Moscow (Russian). Zbl. 518. 20032zbMATHGoogle Scholar
  83. Milovanov, M. B. (1980): Description of solvable Lie groups with a given uniform subgroup. Mat. Sb., Nov. Ser. 113, No. 1, 98–117 (Russian). Zbl. 496. 22013MathSciNetGoogle Scholar
  84. Mkhitaryan, V. G. (1981): On a class of homogeneous spaces of compact Lie groups. Usp. Mat. Nauk 36, No. 2, 193–194. English transl.: Russ. Math. Surv. 36, No. 2, 185–186. Zbl. 502. 57023MathSciNetGoogle Scholar
  85. Montgomery, D., Samelson, H. (1943): Transformation groups on spheres. Ann. Math., II. Ser. 44, No. 3, 454–470MathSciNetzbMATHGoogle Scholar
  86. Montgomery, D., Zippin, L. (1955): Topological Transformation Groups. Wiley, New York. Zbl. 68, 19zbMATHGoogle Scholar
  87. Moore, C., C. (1984): Cocompact subgroups of semi-simple Lie groups. J. Reine Angew. Math. 350, 173–177. Zbl. 525. 22017MathSciNetzbMATHGoogle Scholar
  88. Morozov, V. V. (1939): On primitive groups. Mat. Sb., Nov. Ser. 5, No. 2, 355–390 (Russian). Zbl. 23, 15zbMATHGoogle Scholar
  89. Mostow, G. D. (1950): The extensibility of local Lie groups of transformations and groups on surfaces. Ann. Math., II. Ser. 52, No. 3, 606–636. Zbl. 40, 152MathSciNetzbMATHGoogle Scholar
  90. Mostow, G. D. (1954): Factor spaces of solvable groups. Ann. Math., II. Ser. 60, No. 1, 1–27. Zbl. 57, 261MathSciNetzbMATHGoogle Scholar
  91. Mostow, G. D. (1955a): Some new decomposition theorems for semi-simple groups. Mem. Am. Math. Soc. 14, 31–54. Zbl. 64, 259MathSciNetzbMATHGoogle Scholar
  92. Mostow, G. D. (1955b): On covariant fiberings of Klein spaces I. Am. J. Math. 77, No. 2, 247–278. Zbl. 67, 160MathSciNetzbMATHGoogle Scholar
  93. Mostow, G. D. (1957): Equivariant embeddings in Euclidean space. Ann. Math., II. Ser. 65, No. 3, 432–446. Zbl. 80, 167MathSciNetzbMATHGoogle Scholar
  94. Mostow, G. D. (1961): On maximal subgroups in real Lie groups. Ann. Math., II. Ser. 74, No. 3, 503–517. Zbl. 80, 167MathSciNetzbMATHGoogle Scholar
  95. Mostow, G. D. (1962a): Homogeneous spaces with finite invariant measure. Ann. Math., II. Ser. 75, No. 1, 17–37. Zbl. 115, 257MathSciNetzbMATHGoogle Scholar
  96. Mostow, G. D. (1962b): Covariant fiberings of Klein spaces II. Am. J. Math. 84, No. 3, 466–474. Zbl. 123, 163MathSciNetzbMATHGoogle Scholar
  97. Mostow, G. D. (1971): Arithmetic subgroups of groups with radical. Ann. Math., II. Ser. 93, No. 3, 409–438. Zbl. 212, 364MathSciNetGoogle Scholar
  98. Mostow, G. D. (1975): On the topology of homogeneous spaces of finite measure. Symp. Math. Ist. Naz. Alta Mat. 16, Acad. Press, 375–398. Zbl. 319. 22008Google Scholar
  99. Nagano, T. (1965): Transformation groups on compact symmetric spaces. Trans. Am. Math. Soc. 118, 428–453. Zbl. 151, 288MathSciNetzbMATHGoogle Scholar
  100. Nakamura, I. (1975): Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, No. 1, 85–112. Zbl. 297. 32019zbMATHGoogle Scholar
  101. Nazaryan, R. O. (1975a): On factorization of simple real Lie groups. Izv. Akad. Nauk Arm. SSR, 10, No. 1, 3–22 (Russian). Zbl. 308. 22011zbMATHGoogle Scholar
  102. Nazaryan, R. O. (1975b): Minimal factorizations of simple real Lie groups. Izv. Akad. Nauk Arm. SSR, Mat. 10, No. 5, 455–477 (Russian). Zbl. 335. 22008zbMATHGoogle Scholar
  103. Nazaryan, R. O. (1981): More about factorizations of simple real Lie groups. In Vopr. Teor. Grupp Gomologicheskoj Algebry, 69–79 (Russian)Google Scholar
  104. Onishchik, A. L. (1960): Complex envelopes of compact homogeneous spaces. Dokl. Akad. Nauk SSSR 130, No. 4, 726–729 (Russian). Zbl. 90, 94Google Scholar
  105. Onishchik, A. L. (1962): Inclusion relations between transitive compact transformation groups. Tr. Mosk. Mat. O-va, 11, 199–242. Zbl. 192, 126. English transl.: Transl., II. Ser., Am. Math. Soc. 50, 5–58 (1966).zbMATHGoogle Scholar
  106. Onishchik, A. L. (1963): On transitive compact transformation groups. Mat. Sb., Nov. Ser. 60, No. 4, 447–485. Zbl. 203, 263. English transl.: Transl., II. Ser., Am. Math. Soc. 55, 153–194 (1966).Google Scholar
  107. Onishchik, A. L. (1966): On Lie groups, acting transitively on compact manifolds. I, Mat. Sb., Nov. Ser. 71, No. 4, 483–494. Zbl. 198, 289. English transl.: Transl., II. Ser., Am. Math. Soc. 73, 59–72 (1968)Google Scholar
  108. Onishchik, A. L. (1967): On Lie groups, acting transitively on compact manifolds. II, Mat. Sb., Nov. Ser. 74, No. 3, 398–416. Zbl. 198, 289. English transl.: Math. USSR, Sb. 3, 373–388 (1968)Google Scholar
  109. Onishchik, A. L. (1968): On Lie groups, acting transitively on compact manifolds. III, Mat. Sb., Nov. Ser. 75, No. 2, 255–263. Zbl. 198, 290. English transl.: Math. USSR, Sb. 4, 233–240 (1969)Google Scholar
  110. Onishchik, A. L. (1969): Decompositions of reductive Lie groups. Mat. Sb., Nov. Ser. 80, No. 4, 553–599. Zbl. 222. 22011. English transl.: Math. USSR, Sb. 9, 515–554Google Scholar
  111. Onishchik, A. L. (1970): Lie groups which act transitively on Grassmann and Stiefel manifolds. Mat. Sb., Nov. Ser. 83, No. 3, 407–428. Zbl. 206, 317. English transl.: Math. USSR, Sb. 12, 405–427Google Scholar
  112. Onishchik, A. L. (1976): On invariants and almost invariants of compact Lie groups of transformations. Tr. Mosk. Mat. O.-va 35, 235–264. Zbl. 406. 57025. English transl.: Trans. Mosc. Math. Soc, 35, 237–267zbMATHGoogle Scholar
  113. Onishchik, A. L. (1977, 1981): On extensions of transitive transformation groups. Izv. Vyssh. Uchebn. Zaved., Mat. No. 3, 53–65. Zbl. 362. 57007. Corrections. (1981) No. 7, 88. Zbl. 474. 57021. English transl.: Sov. Math. 21, 42–51, and 25, 104–105Google Scholar
  114. Onishchik, A. L. (1979): Remark on invariants of groups generated by reflections. In Vopr. Teor. Grupp Gomologicheskoj Algebry, 138–141. Zbl. 435.20026. English transl.: Selecta Math. Sov. 3 (1983/84), 239–241Google Scholar
  115. Oniščik (= Onishchik), A. L. (1981): Parabolic factorizations of semi-simple algebraic groups. Math. Nachr. 104, 315–329. Zbl. 531. 20023MathSciNetzbMATHGoogle Scholar
  116. Oniščik (= Onishchik), A. L. (1988): On the centre of a transitive semisimple Lie group. Ann. Global Anal. Geom. 6, No. 3, 265–272. Zbl. 685.57023MathSciNetzbMATHGoogle Scholar
  117. Ovsyannikov, L. V. (1978): Groups Analysis of Differential Equations. Nauka, Moscow (Russian). Zbl. 484.58001Google Scholar
  118. Palais, R. S. (1957 a): A Global Formulation of the Lie Theory of Transformation Groups. Mem. Am. Math. Soc. 22. Zbl. 178, 265Google Scholar
  119. Palais, R. S. (1957 b): Imbedding of compact, differentiable transformation groups in orthogonal representations. J. Math. Mech. 6, No. 5, 673–678. Zbl. 86, 26MathSciNetzbMATHGoogle Scholar
  120. Palais, R. S. (1960): The Classification of G-Spaces. Mem. Am. Math. Soc. 36. Zbl. 119, 384Google Scholar
  121. Palais, R. S. (1968): Foundations of Global Non-linear Analysis. Benjamin. New York-Amsterdam. Zbl. 164, 111zbMATHGoogle Scholar
  122. Palais, R. S., Stewart, T. S. (1961a): Torus bundles over a torus. Proc. Am. Math. Soc. 12, No. 1, 26–29. Zbl. 102, 387MathSciNetzbMATHGoogle Scholar
  123. Palais, R. S., Stewart, T. S. (1961b): The cohomology of differentiable transformation groups. Am. J. Math. 83, No. 4, 623–644. Zbl. 104, 177MathSciNetzbMATHGoogle Scholar
  124. Pontryagin, L. S. (1984): Topological Groups. 4th edition. Nauka, Moscow. Zbl. 534.22001. German transl.: Teubner, Leipzig, 1957/1958zbMATHGoogle Scholar
  125. Raghunathan, M. (1972): Discrete Subgroups of Lie Groups. Springer, Berlin. Zbl. 254. 22005zbMATHGoogle Scholar
  126. Samelson, H. (1952): Topology of Lie groups. Bull. Am. Math. Soc. 58, No. 1, 2–37. Zbl. 47, 167MathSciNetzbMATHGoogle Scholar
  127. Samelson, H. (1958): On curvature and characteristic of homogeneous spaces. Mich. Math. J. 5, No. 1, 13–18. Zbl. 84, 374MathSciNetzbMATHGoogle Scholar
  128. Scheerer, H. (1971): Transitive actions on Hopf homogeneous spaces. Manuscr. Math. 4, No. 2, 99–134. Zbl. 212, 286MathSciNetzbMATHGoogle Scholar
  129. Schneider, V. (1973): Transitive actions on highly connected spaces. Proc. Amer. Math. Soc. 38, No. 1, 179–185MathSciNetzbMATHGoogle Scholar
  130. Schneider, V. (1975): Homogeneous spaces with vanishing Steenrod squaring operations. Proc. Amer. Math. Soc. 50, 451–458MathSciNetzbMATHGoogle Scholar
  131. Schultz, R. (1984): Nonlinear analogs of linear group actions on spheres. Bull. Am. Math. Soc, New Ser. 11, No. 2, 263–285. Zbl. 564. 57001zbMATHGoogle Scholar
  132. Schwarz, G. W. (1975): Smooth functions invariant under the action of a compact Lie group. Topology 14, No. 1, 63–68. Zbl. 297.57015MathSciNetzbMATHGoogle Scholar
  133. Serre, J-P. (1951): Homologie singulière des espaces fibrés. Applications. Ann. Math., II. Ser. 54, No. 3, 425–505. Zbl. 45, 260zbMATHGoogle Scholar
  134. Serre, J-P. (1971): Cohomologie des Groupes Discrets. Ann. Math. Stud., No. 70, Princeton Univ. Press, Princeton, 77–169. Zbl. 235.22020Google Scholar
  135. Shchetinin, A. (1988): On a class of compact homogeneous spaces I. Ann. Global Anal. Geom. 6, No. 2, 119–140. Zbl. 635.57025MathSciNetzbMATHGoogle Scholar
  136. Shchetinin, A. (1990): On a class of compact homogeneous spaces II. Ann. Global Anal. Geom. 8, No. 3, 227–247. Zbl. 718.57014MathSciNetzbMATHGoogle Scholar
  137. Steenrod, N (1951): The Topology of Fibre Bundles. Princeton Univ. Press, Princeton. Zbl. 54, 71zbMATHGoogle Scholar
  138. Sternheimer, D. (1968): Extensions et unifications d’algèbres de Lie. J. Math. Pures Appl., IX. Sér. 47, No. 3, 247–287. Zbl. 244.17015+MathSciNetzbMATHGoogle Scholar
  139. Sulanke, R., Wintgen, P. (1972): Differentialgeometrie und Faserbündel. Deutscher Verlag des Wissenschaften, Berlin. Zbl. 327. 53020Google Scholar
  140. Tits, J. (1962): Espaces homogènes complexes compacts. Comment Math. Helv. 37, No. 2, 111–120. Zbl. 108, 363MathSciNetzbMATHGoogle Scholar
  141. Vinberg, E. B. (1961): The Morozov-Borel theorem for real Lie groups. Dokl. Akad Nauk SSSR 141, No. 2, 270–273. English transl.: Sov. Math., Dokl. 2, 1416–1419. Zbl. 112, 25MathSciNetGoogle Scholar
  142. Vinberg, E. B. (1963): Lie groups and homogeneous spaces. Itogi Nauki Tekh., Ser. Algebra, Topologiya. 1962, 5–32 (Russian). Zbl. 132, 22Google Scholar
  143. Vishik, E. Ya. (1973): Lie groups, transitive on simply connected compact manifolds. Mat. Sb., Nov. Ser. 92, No. 4, 564–570. Zbl. 289. 22007. English transl.: Math. USSR, Sb. 21, 558–564Google Scholar
  144. Vladimirov, S. A. (1979): Groups of Symmetries of Differential Equations and Relativistic Fields. Atomizdat, Moscow. Zbl. 399. 58021Google Scholar
  145. Wang, H.-C. (1954): Closed manifolds with homogeneous complex structures. Am. J. Math. 76, No. 1, 1–32. Zbl. 55, 166zbMATHGoogle Scholar
  146. Wang, H.-C. (1956): Discrete subgroups of solvable Lie groups. Ann. Math., II. Ser. 64, No. 1, 1–19. Zbl. 73, 285zbMATHGoogle Scholar
  147. Warner, F. W. (1983): Foundations of Differentiable Manifolds and Lie Groups. Springer, New York. Zbl. 516. 58001zbMATHGoogle Scholar
  148. Wasserman, A. (1969): Equivariant differential topology. Topology 8, No. 2, 127–150. Zbl. 215, 247MathSciNetzbMATHGoogle Scholar
  149. Wells, R. O. (1973): Differential Analysis on Complex Manifolds. Prentice Hall, Englewood Cliffs. Zbl. 262. 32005. 2nd ed. (1980) Springer, New York. Zbl. 435. 32004zbMATHGoogle Scholar
  150. Wolf, J. A. (1968): The geometry and structure of isotropy-irreducible homogeneous spaces. Acta Math. 120, 59–148. Zbl. 157, 521MathSciNetzbMATHGoogle Scholar
  151. Wolf, J. A. (1972): Spaces of Constant Curvature. Univ. of California Press, Berkeley. Zbl. 162, 533. 3rd. ed. (1974) Publish or Perish, Boston. Zbl. 281. 53034Google Scholar
  152. Zabotin, Ya. I. (1958a): Semisimple transitive imprimitive groups of the four-dimensional complex space. Izv. Vyssh. Uchebn. Zaved., Mat. 1958, No. 4, 67–79 (Russian). Zbl. 125, 17Google Scholar
  153. Zabotin, Ya. I. (1958b): On transitive imprimitive groups with radical in the four-dimensional complex space. Izv. Vyssh. Uchebn. Zaved., Mat. 1958, No. 5, 73–85 (Russian). Zbl. 125, 17Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. L. Onishchik
    • 1
  1. 1.Yaroslavl UniversityYaroslavlRussia

Personalised recommendations