Skip to main content

Alterations in the Biosynthesis of Lysine, Threonine, and Methionine by Tissue Culture Approaches in Maize

  • Chapter
Maize

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 25))

  • 527 Accesses

Abstract

Monogastric animals, including humans, must have several essential amino acids such as lysine provided in their diet. Consequently, the nutritional value of protein in most edible crops has been determined and, for some crops, concerted efforts have been expended to reduce deficiencies in specific amino acids found in the grain. In maize, most commercially grown varieties contain about 8 to 11% protein on a kernel dry weight basis. In a long-term selection program, maize protein concentration was increased significantly to about 27%, but an accompanying reduction in kernel weight resulted in only a slight increase in amount of protein per kernel (Dudley 1974). The high-protein line had a higher proportion of protein in the low-quality, prolamin (zein) fraction of endosperm proteins, indicating that selection for extreme increases in protein concentration most likely would not improve the nutritional quality of maize. The nutritional quality of maize protein is poor because the zein fraction, which contributes about half of the total protein, is seriously deficient in lysine and tryptophan when maize is used for monogastric animal feed or for human food (also see S. Bajaj et al. Chap. VIL 1, this Vol.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander DE (1988) Breeding special nutritional and industrial types. In: Sprague G.F., Dudley J.W (eds) Corn and corn improvement, 3rd edn. Am Soc Agronomy, Madison, pp 869–880

    Google Scholar 

  • Anonymous (1987) Protein quality maize. NCR Natl Acad Press, Washington DC

    Google Scholar 

  • Bryan JK (1980) Synthesis of the aspartate family and branched-chain amino acids. In: Miflin BJ (ed) The biochemistry of plants, vol 5. Amino acids and derivatives. Academic Press, New York, pp 403–452

    Google Scholar 

  • Bryan JK (1990) Advances in the biochemistry of amino acid biosynthesis. In: Miflin BJ, Lea PJ (eds) The biochemistry of plants, vol 16. Intermediary nitrogen metabolism. Academic Press, New York, pp 161–195

    Chapter  Google Scholar 

  • Diedrick TJ, Frisch DA, Gengenbach BG (1990) Tissue culture isolation of a second mutant locus for increased threonine accumulation in maize. Theor Appl Genet 79: 209–215

    Article  CAS  Google Scholar 

  • Dotson SB, Somers DA (1989) Differential metabolism of sodium azide in maize callus and germinating embryos. Mutat Res 213: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Dotson SB, Somers DA, Gengenbach BG (1989) Purification and characterization of lysine-sensitive aspartate kinase from maize cell cultures. Plant Physiol 91: 1602–1608

    Article  PubMed  CAS  Google Scholar 

  • Dotson SB, Somers DA, Gengenbach BG (1990a) Kinetic studies of two lysine-sensitive aspartate kinases purified from maize suspension cultures. Plant Physiol 93: 98–104

    Article  PubMed  CAS  Google Scholar 

  • Dotson SB, Frisch DA, Somers DA, Gengenbach BG (1990b) Lysine-insensitive aspartate kinase in two threonine-overproducing mutants of maize. Planta 182: 546–552

    Article  CAS  Google Scholar 

  • Dudley J (1974) Seventy generations of selection for oil and protein in maize. Crop Science Soc of America, Madison

    Google Scholar 

  • Frisch DA (1987) Allelism test and selection for Zea mays mutants altered in amino acid production. MS Thesis, Univ Minnesota, St Paul 102 pp

    Google Scholar 

  • Frisch DA, Gengenbach BG, Tommey AM, Sellner JM, Somers DA, Myers DE (1991 a) Isolation and characterization of dihydrodipicolinate synthase from maize. Plant Physiol 96: 444 452

    Article  PubMed  Google Scholar 

  • Frisch DA, Tommey AM, Gengenbach BG, Somers DA (1991b) Direct genetic selection of a maize cDNA for dihydrodipicolinate synthase in an Escherichia coii dapA ― auxotroph. Mol Gen Genet 228: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Gengenbach BG (1984) Tissue culture and related approaches for grain quality improvement. In: Collins GB, Petolino JG (eds) Applications of genetic engineering to crop improvement. Nijhoff Junk, Dordrecht, pp 211–254

    Chapter  Google Scholar 

  • Glover, DV, Mertz ET (1987) Corn. In: Olson RA, Frey KJ (eds) Nutritional quality of cereal grains. Am Soc Agron, Madison pp 183–336

    Google Scholar 

  • Green CE, Phillips RL (1974) Potential selection system for mutants with increased lysine, threonine and methionine in cereal crops. Crop Sci 14: 827–830

    Article  CAS  Google Scholar 

  • Hibberd KA, Green CE (1982) Inheritance and expression of lysine plus threonine resistance selected in maize tissue culture. Proc Natl Acad Sci USA 79: 559–563

    Article  PubMed  CAS  Google Scholar 

  • Hibberd KA, Walter T, Green CE, Gengenbach BG (1980) Selection and characterization of a feedback-insensitive tissue culture of maize. Planta 148: 183–187

    Article  CAS  Google Scholar 

  • Hibberd KA, Anderson PC, Barker M (1986a) Tryptophan overproducer mutants of cereal crops. US Patent 4,581, 847. Date issued: 15 April, 1986 US Dept. Commerce Patent Trademark Office Washington, DC

    Google Scholar 

  • Hibberd KA, Barker M, Anderson PC, Under L (1986b) Selection for high tryptophan maize. In: Somers DA, Gengenbach BG, Biesboer DD, Hackett WP, Green CE (eds) Int Congr Plant tissue cell culture, 4-8 Aug. Univ of Minnesota, Minneapolis, Abst 6, p 440

    Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145: 279–280

    Article  PubMed  CAS  Google Scholar 

  • Miao S, Duncan DR, Widholm JM (1988) Selection of regenerable maize callus cultures resistant to 5-methyl-DL-tryptophan, S-2-aminoethyl-L-cysteine and high levels of L-lysine plus L-threonine. Plant Cell Tissue Organ Cult 14: 3–14

    Article  CAS  Google Scholar 

  • Myers DE, Gengenbach BG (1982) The isolation and purification of enzymes involved in the metabolism of the aspartate family of amino acids in maize. Plant Physiol 69s: 128

    Google Scholar 

  • Negrutiu I, Cattoir-Reynearts A, Verbruggen I, Jacobs M (1984) Lysine overproducer mutants with an altered dihydrodipicolinate synthase from protoplast culture of Nicotiuna sylveslris (Spegazzini and Comes). Theor AppI Genet 68: 11–20

    CAS  Google Scholar 

  • Snustad DP, Hunsperger JP, Chereskin BM, Messing J (1988) Maize glutamine synthetase cDNAs: isolation by direct genetic selection in Escherichia coli. Genetics 120: 1111–1124

    PubMed  CAS  Google Scholar 

  • Walter TJ, Connelly JA, Gengenbach BG, Wold F (1979) Isolation and characterization of two homoserine dehydrogenases from maize suspension cultures. J Biol Chem 254: 1349–1355

    PubMed  CAS  Google Scholar 

  • Zuber MS (1975) Protein quality improvement in maize. Proc 30th Annu Corn Sorghum Res Conf. Am Seed Trade Assoc, Washington DC, pp 166–184166-184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gengenbach, B.G., Diedrick, T.J. (1994). Alterations in the Biosynthesis of Lysine, Threonine, and Methionine by Tissue Culture Approaches in Maize. In: Bajaj, Y.P.S. (eds) Maize. Biotechnology in Agriculture and Forestry, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57968-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57968-4_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63419-2

  • Online ISBN: 978-3-642-57968-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics