Skip to main content

Laser Remote Sensing of Vegetation

  • Chapter
Advances in Bioclimatology

Part of the book series: Advances in Bioclimatology ((ADVS BIOCLIMAT.,volume 3))

Abstract

Most of the presently available methods for remote sensing of plant growth and development are based on measurements of spectral reflectance factors (Ross 1981; Kondratyev and Fedchenko 1982; Rachkulik and Sitnikova 1981; Bauer 1985; Shibayama and Akiyama 1986). These characteristics, however, contain information about the plants themselves, as well as the singularities of the solar radiation regime and other physical parameters of the environment (Kondratyev and Fedchenko 1982). It is, therefore, very difficult to find an unambiguous relationship between the signals measured and parameters that characterize the vegetation condition, such as biomass, chlorophyll and moisture content, occurrence of mineral deficiency, and the presence of other stresses. The procedure for measuring reflectance factors is concerned with the need to measure the standard reflecting surfaces which receive the same illumination as the object. This complicates the measurements considerably and appreciably decreases the accuracy of the reflectance factors measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barz W (1977) Degradation of polyphenols in plants and plant cell suspensium cultures. Physiol Veg 15: 261–277.

    CAS  Google Scholar 

  • Bauer ME (1985) Spectral inputs to crop identification and condition assessment. Proc IEEE 73, 6: 1071–1085.

    Article  Google Scholar 

  • Belyaev BI, Kiselevsky LI, Smetanin EA, Pluta VE (1978) Portative fasting spectrometer MSS-2. Appl Opt 29: 1011–1018 (in Russian).

    CAS  Google Scholar 

  • Billard JP, Boucard J (1982) Effect of sodium chloride on the nitrate reductase of Suaeda maritima var. macrocarpa. Photochemistry 21(6): 1225–1229.

    Article  CAS  Google Scholar 

  • Blazej A, Suty L (1973) Raslinné fenolové z lúteniny. Vydavatol Tech Ekon Lit, Bratislava, 240 pp.

    Google Scholar 

  • Brayon A (1966) Seasonal changes of plant tissues self fluorescence. Science articles of Tartu University 185. In: Investigation on plant physiology and biochemistry, vol 2. 2nd Republic Conf Plant physiology and genetics, Tartu, pp 75–83.

    Google Scholar 

  • Bristow MPF, Houston WH, Measures RM (1973) Development of a laser fluorescensor for airborne surveying of the aquatic environment. NASA Conf on the lasers for hydrographic studies, Wallops Island, Sept 1973, SP-375, 1973, pp 173-195.

    Google Scholar 

  • Bunkin AF, Vlasov DV, Galumyan AS, Malcev DM, Slobodyanin VP (1984) Universal apparatus complex for the distance laser airborne sensing. Tech Phys 54(11): 2190–2200 (in Russian).

    CAS  Google Scholar 

  • Bunkin AF, Vlasov DV, Mirkamilov DM (1987) Physical basis of laser remote sensing of the earth’s surface. FAN, Tashkent (in Russian).

    Google Scholar 

  • Canto de Loura I, Dubacq JP, Thomas JC (1987) The effects of nitrogen deficiency on pigments and lipids of cyanobacteria. Plant Physiol 83: 838–844.

    Article  CAS  Google Scholar 

  • Chappelle EW, Wood FM Jr, McMurtrey JE III, Newcomb WW (1984) Laser-induced fluorescence of green plants. 1. A technique for the remote detection of plant stress and species differentiation. Appl Opt 23: 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Chappelle EW, Wood FM Jr, McMurtrey JE III, Newcomb WW (1985) Laser-induced fluorescence of green plants. 3. LTF spectral signatures of five major plant types. Appl Opt 24: 74–80.

    Article  PubMed  CAS  Google Scholar 

  • Chetverikov AG, Richards GP, Peisahzon BI (1976) Application of the fluorescence spectroscope for vital observation of the redox state in drought plant cells. Dokl Acad Sci USSR 230: 492–495 (in Russian).

    CAS  Google Scholar 

  • Chirkova TV, Dragunova EV, Bugrova MP (1977) Redox reactions of flavoproteins and pyridine nucleotides from roots of plants different in their resistance to oxygen deficiency studied in vivo. Plant Physiol 24: 126–131 (in Russian).

    CAS  Google Scholar 

  • Collins W (1978) Remote sensing of crop type and maturity. Photogr Eng Remote Sens 44(1): 43–45.

    Google Scholar 

  • Duysens LNM, Amez J (1957) Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near ultraviolet and visible regions. Biochim Biophys Acta 24: 19–26.

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy AM, Salarna FM, Mazek AA (1986) Chlorophyll response to salinity, sodicity and heat stresses in cotton, rama and millet. Photosynthetica 20: 204–211.

    Google Scholar 

  • Estabrook RW (1962) Fluorimetric measurement of reduced pyridine nucleotide in cellular and subcellular particles. Anal Biochem 4: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Ferns DS, Zara SJ, Barber J (1984) Application of high resolution spectroradiometry to vegetation. Photogr Eng Remote Sens 50: 1725–1735.

    Google Scholar 

  • Frank E, Hoge RN, Swift K (1983) Feasibility of airborne detection of laser-induced fluorescence emission from green terrestrial plants. Appl Opt 22: 2991–3000.

    Article  Google Scholar 

  • Gehlhaar V, Gunther KP, Lutker I (1981) Compact and highly sensitive fluorescence lidar for oceanographic measurements. Appl Opt 20: 3319–3320.

    Article  Google Scholar 

  • Gerstl SA, Simmer C, Powers B (1986) The canopy hot-spot as crop identifier. In: Damen MCJ, Sicco Smit G, Verstappen HTM (eds) Remote sensing for resource development and environment management. Proc 7th Int Symp Enschede, 25–29 Aug 1986. Balkeme, Rotterdam, pp 261–263.

    Google Scholar 

  • Horler DNH, Dockray M, Barber J, Barringer AR (1983) Red edge measurements for remotely sensing plant chlorophyll content. Adv Space Res 2: 273–277.

    Article  Google Scholar 

  • Il’in VP, Kochubey SM (1987) Changes in the luminescence spectra of wheat leaves by sulphate in the soil. Physiol Biochim Kult Rst 19: 258–262 (in Russian).

    CAS  Google Scholar 

  • Il’in VP, Kochubey SM, Shelyah-Sosonko YuR (1986) Changes in plant luminescence in the regions of metal deposits. Dokl Acad Sci UK SSR Ser B 10: 51–53 (in Russian).

    Google Scholar 

  • Kanevski VA, Ross JK (1983) A Monte Carlo simulation model for radiation conditions in coniferous trees. Acad Sci Estonian SSR, Div Phys, Math Tech Sci Preprint, Tartu, 32 pp (in Russian).

    Google Scholar 

  • Kanevski VA, Ryasantsev VF, Perekrest ON et al. (1985) About the possibility of the remote sensed laser diagnostic of the crop condition using their luminescence characteristics. Sov J Remote Sens 6: 37–39 (in Russian).

    Google Scholar 

  • Kanevski VA, Movchan YaI, Shelyag-Sosonko YuR et al. (1988) A remote sensed biochemical method for searching for mine deposits. Certificate of invention 1365009, Bull 1 (in Russian).

    Google Scholar 

  • Kanevski VA, Ross JK, Fedak VS, Shelyag-Sosonko YuR (1989) A remote sensed way to study the plant objects and the equipment for this. Certificate of invention 1460625, Bull 7 (in Russian).

    Google Scholar 

  • Karapetyan NV, Bukhov NG (1986) Chlorophyll variables of fluorescence as indicator of the plant physiological state. Physiol Rast 33: 1013–1026 (in Russian).

    CAS  Google Scholar 

  • Karnaukhov VN (1978) Cell luminescence spectral analysis. Nauka, Moscow, 206 pp (in Russian).

    Google Scholar 

  • Karnaukhov VN, Karnaukhova NA, Uashin VA (1984) The method and technique of luminescence cytodiagnostic. Preprint of Inst Biol Phys, Puschino (USSR) (in Russian).

    Google Scholar 

  • Kim HH (1973) New algae mapping technique by the use of an airborne laser fluorosensor. Appl Opt 12: 1454–1459.

    Article  PubMed  CAS  Google Scholar 

  • Kochubey SM (1986) The pigment organization of the photosynthetic membranes as the basis of the energy security of photosynthesis. Naukova Dumka, Kiev (in Russian).

    Google Scholar 

  • Kochubey SM, Shadchina TM, Odinoky NS (1986) Manifestation of nitrogen nutrition deficiency in plants by spectral characteristics of leaf fluorescence. Physiol Biochem Kult Rast 18: 35–39 (in Russian).

    Google Scholar 

  • Kochubey SM, Kobetz NI, Shadchina TM (1987) The shape reflectance spectra of the leaves as informative basis of the remote sensing of crop state. Physiol Biochem Kult Rast 19: 539–545 (in Russian).

    Google Scholar 

  • Kochubey SM, Shadchina TM, Kobets NI, Dmitrieva VV (1988) Correlation between reflectance characteristics of winter leaves and nitrogen and chlorophyll content in term during the vegetation. Physiol Biochem Kult Rast 20: 530–534 (in Russian).

    Google Scholar 

  • Kochubey SM, Kobets MI, Shadchina TM (1990) Spectral properties of leaves as a basis of remote sensing research. Naukova Dumka, Kiev, 132 pp (in Russian).

    Google Scholar 

  • Kohen E, Kohen C, Thorell B, Akerman L (1968) Kinetics of the fluorescence response to microelectrophoretically introduced metabolites in the single living cells. Biochim Biophys Acta 158: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Kondratyev KYa, Fedchenko PP (1982) Spectral reflectivity and recognition of vegetation. Gidrometeoizdat, Leningrad, 216 pp (in Russian).

    Google Scholar 

  • Kondratyev KYa, Kanevski VA, Ross JK, Pozdnyakov DV, Ryazantsev VF, Fedchenko PP (1987) Laser remote sensing of vegetation. Acad Sci USSR, Leningrad, 168 pp (in Russian).

    Google Scholar 

  • Lehninger AL (1972) Biochemistry. Worth, New York.

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll fluorescence signature of leaves during the autumnal chlorophyll breakdown. J Plant Physiol 131: 101–110.

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (ed) (1988a) In vivo chlorophyll fluorescence as a tool for stress detection in plants. In: Applications of chlorophyll fluorescence. Kluwer, Dordrecht, pp 119–132.

    Google Scholar 

  • Lichtenthaler HK (ed) (1988b) Remote sensing of chlorophyll fluorescence in oceanography and in terrestrial vegetation: an introduction. In: Applications of chlorophyll fluorescence. Kluwer, Dordrecht, pp 287–297.

    Google Scholar 

  • Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Chem 19: (Suppl) 1: 29–85.

    Article  Google Scholar 

  • McFarlane JC, Watson RD, Theisen AF et al. (1980) Plant stress detection by remote measurement of fluorescence. Appl Opt 19: 3287–3289.

    Article  PubMed  CAS  Google Scholar 

  • Measures RM, Houston HR, Stephenson DG (1974) Laser induced fluorescence decay spectra. A new form of environmental signature. Opt Eng 13: 450–494.

    Google Scholar 

  • Öquist G (1986) Effects of winter stress on chlorophyll organization and function in Scots pine. J Plant Physiol 122: 169–181.

    Article  Google Scholar 

  • Penny MF, Abbot RH, Phillipe DM (1986) Airborne laserhydrography in Australia. Appl Opt 25: 2046–2053.

    Article  PubMed  CAS  Google Scholar 

  • Rachkulik VI, Sitnikova MV (1981) Reflectivity and state of vegetation cover. Gidrometeoizdat, Leningrad, 287 pp (in Russian).

    Google Scholar 

  • Rinderle U, Lichtenthaler HK (1988) The chlorophyll fluorescence ratio F690/F735 as a possible stress indicator. In: Lichtenthaler HH (ed) Applications of chlorophyll fluorescence. Kluwer, Dordrecht, pp 189–196.

    Google Scholar 

  • Ross J (1981) The radiation regime and architecture of plant stands. Junk, The Hague, 391 pp.

    Book  Google Scholar 

  • Ross JK, Marshak AL (1988) Calculation of canopy bidirectional reflectance using the Monte Carlo method. Remote Sens Environ 24: 213–227.

    Article  Google Scholar 

  • Safaraliev PM, L’vov NP, Mardanov AA, Kretovitch VL (1984) About reasons of decrease nitratreductase activity in beans upon soil salinity. Plant Physiol 31: 658–665 (in Russian).

    CAS  Google Scholar 

  • Schmid PPS, Feucht W (1986) Kohlenhydrate, Chlorophyll, Prolin und Polyphenole in Blättern von Kirschkombination (Prunus avium L. auf P. cerasus L.) mit unterschiedlichen Streßsymptomen. Angew Bot 60: 365–372.

    Article  CAS  Google Scholar 

  • Shadchina TM, Beloivan CA (1992) Testing of the plant stress on spectral parameters of its luminescence. In: Regulation mechanisms of plant physiology and genetics. Naukova Dumka, Kiev, 160 pp (in Russian).

    Google Scholar 

  • Shibayama M, Akiyama T (1986) A spectroradiometer for field use. VI. Radiometric estimation for chlorophyll index of rice canopy. Jpn J Crop Sci 35: 433–438.

    Article  Google Scholar 

  • Siano SA, Muthazasan R (1989) NADH and flavin fluorescence responses of starved yeast cultures to substrate. Biotechnol Bioeng 34: 660–670.

    Article  PubMed  CAS  Google Scholar 

  • Sud’ina EG (1964) Changes in biosynthesis and state of the chlorophyll upon deficit of the same elements. Ukrain Bot J 21: 36–44 (in Russian).

    Google Scholar 

  • Tusov UB, Korvatovsky BN, Paschenko VL, Rubin LB (1980) On a question about the nature of the chloroplast fluorescence at 735 nm upon room and low temperature. Dokl Acad Sci USSR 252: 1500–1504 (in Russian).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kanevski, V.A., Ross, J., Kochubey, S.M., Shadchina, T. (1994). Laser Remote Sensing of Vegetation. In: Stanhill, G. (eds) Advances in Bioclimatology. Advances in Bioclimatology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57966-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57966-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63418-5

  • Online ISBN: 978-3-642-57966-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics