Skip to main content

Thermoelectric Methods for Measurement of Sap Flow in Plants

  • Chapter

Part of the book series: Advances in Bioclimatology ((ADVS BIOCLIMAT.,volume 3))

Abstract

Thermoelectric methods for the determination of sap flow in stems use a heat pulse, given to stems from external sources, as a tracer for water movement in the plant. The methods were developed to improve the assessment of transpiration from whole plants both for the study of plant water relationship and to improve irrigation management. With the increasing shortage of water in many regions around the world, the necessity for accurate knowledge on water budget and plant-water requirements has became very important. In crop modeling, the input of accurate data on water use, based on relatively short time intervals, is necessary for an improved understanding of the environmental effects on crop production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker JM, Nieber JL (1989) An analysis of the steady-state heat balance method for measuring sap flow in plants. Agric For Meteorol 48: 93–110.

    Article  Google Scholar 

  • Baker JM, van Bavel CHM (1987) Measurement of mass flow of water in the stems of herbaceous plants. Plant Cell Environ 10: 777–782.

    Google Scholar 

  • Bloodworth EM, Page JB, Cowley WR (1955) A thermoelectric method for determining the rate of water movement in plants. Soil Sci Soc Am Proc 19: 411–414.

    Article  Google Scholar 

  • Cermak J, Kucera J (1987) Transpiration of mature stands of spruce (Picea abies L. Karst.) as estimated by the tree-trunk heat balance method. In: Forest hydrology and watershed management. Proc Vancouver Symp, Aug 1987. IAHS Publ 167, pp 311-317.

    Google Scholar 

  • Cermak J, Deml M, Penka M (1973) A new method of sap flow rate determination in trees. Biol Plant 15: 171–178.

    Article  Google Scholar 

  • Cermak J, Ulehla J, Kucera J, Penka M (1982) Sap flow rate and transpiration in the full-grown oak (Quercus robus L.) in floodplain forest exposed to seasonal floods as related to potential evapotranspiration and tree dimensions. Biol Plant (Praha) 24: 446–460.

    Google Scholar 

  • Cermak J, Jenik J, Kucera J, Zidek V (1984) Xylem water flow in a crack willow tree (Salix fragilis L.) in relation to diurnal changes of environment. Oecologia 64: 145–151.

    Article  Google Scholar 

  • Closs RL (1958) Heat pulse method for measuring rate of sap flow in a plant stem. N Z J Sci 1: 281–288.

    Google Scholar 

  • Cohen Y (1991) Determination of orchard water requirement by a combined trunk sap flow and meteorological approach. Irrig Sci 12: 93–98.

    Article  Google Scholar 

  • Cohen Y (1992) A combined transpiration measurement and meteorological approach for determining water requirement in the field and orchard. In: Shalhevet J, Changming L, Yuexian X (eds) Water use efficiency in agriculture, Proc of the Binational China-Israel Worksh, April 22–26, 1991 Beijing, China, Priel Publishers, Rehovot, pp 170–180.

    Google Scholar 

  • Cohen Y, Fuchs M (1989) Problems in calibrating the heat pulse method for measuring sap flow in the stem of trees and herbaceous plants. Agronomie 9: 321–32

    Article  Google Scholar 

  • Cohen Y, Fuchs M, Green GC (1981) Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ 4: 391–397.

    Article  Google Scholar 

  • Cohen Y, Fuchs M, Cohen S (1983) Resistance to water uptake in mature citrus tree. J Exp Bot 34: 451–460.

    Article  Google Scholar 

  • Cohen Y, Kelliher FM, Black TA (1985) Determination of sap flow in Douglas-fir trees using the heat pulse technique. Can J For Res 15: 422–428.

    Article  Google Scholar 

  • Cohen Y, Fuchs M, Falkenflug V, Moreshet S (1988) Calibrated heat pulse method for determining water uptake in cotton. Agron J 80: 398–402.

    Article  Google Scholar 

  • Cohen Y, Huck MG, Hesketh JD, Frederick JU (1990) Sap flow in the stem of water stressed soyabeans and maize plants. Irrig Sci 11: 45–50.

    Article  Google Scholar 

  • Cohen Y, Takeuchi S, Nozaka J, Yano T (1992) Accuracy of sap flow measurements in herbaceous plants using heat balance or heat pulse methods. Agron J (in press).

    Google Scholar 

  • Daum CR (1967) A method for determining water transport in trees. Ecology 48: 425–431.

    Article  Google Scholar 

  • Diawara A, Loustau D, Berbigier P (1991) Comparison of two methods for estimating the evaporation of a Pinus pinaster (Ait.) stand: sap flow and energy balance with sensible heat flux measurements by an eddy covariance method. Agric For Meteorol 54: 49–66.

    Article  Google Scholar 

  • Doley D, Grieve BJ (1966) Measurement of sap flow in a eucalyptus by thermoelectric method. Aust for Res 2: 3–27.

    Google Scholar 

  • Dugas WA (1990a) Comparative measurement of stem flow and transpiration in cotton. Theor Appl Climatol 42: 215–221.

    Article  Google Scholar 

  • Dugas WA (1990b) Sap flow in stems. In: Francois B (ed) Remote sensing reviews. Harwood Academic Publishers, New York, pp 225–235.

    Google Scholar 

  • Dugas WA, Marcus LH, Herman SM (1992) Diurnal measurements of honey mesquite transpiration using stem flow gauges. J Range Manage 45: 99–102.

    Article  Google Scholar 

  • Edwards WRN, Warwick NWM (1984) Transpiration from a kiwifruit vine as estimated by the heat pulse technique and the Penman-Monteith equation. N Z J Agric Res 27: 537–543.

    Article  Google Scholar 

  • Fichtner K, Schulze ED (1990) Xylem water flow in tropical vines as measured by a steady state heating method. Oecologia 82: 355–361.

    Article  Google Scholar 

  • Foster RD, Gifford EM (1974) Comparative morphology of vascular plants. Freeman, San Francisco, 751 pp.

    Google Scholar 

  • Gavloski JE, Whitfield GH, Ellis CR (1992) Effect of restricted watering on sap flow and growth in corn (Zea mays L.). Can J Plant Sci 72: 361–368.

    Article  Google Scholar 

  • Granier A (1985) Une nouvelle methode pour la mesure du flux de seve brute dans le tronc des arbres. Ann Sci for 42: 81–88.

    Article  Google Scholar 

  • Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3: 309–320.

    PubMed  Google Scholar 

  • Granier A, Bobay V, Gash JHC, Gelpe J, Saugier B, Shuttleworth WJ (1990) Vapor flux density and transpiration rate comparisons in a stand of maritime pine (Pinus pinaster Ait.) in les landes forest. Agric For Meteorol 51: 309–319.

    Article  Google Scholar 

  • Green SR, Clothier BE (1988) Water use of kiwifruit vines and apple trees by the heat-pulse technique. J Exp Bot 39: 115–123.

    Article  Google Scholar 

  • Groot A, King KM (1992) Measurement of sap flow by the heat balance method: numerical analysis and application to coniferous seedlings. Agric For Meteorol 59: 289–308.

    Article  Google Scholar 

  • Ham JM, Heilman JL (1990) Dynamics of a heat balance stem flow gauge during high flow. Agron J 82: 147–152.

    Article  Google Scholar 

  • Ham JM, Heilman JL, Lascano RJ (1990) Determination of soil water evaporation and transpiration from energy balance and stem flow measurements. Agric For Meteorol 52: 287–301.

    Article  Google Scholar 

  • Ham JM, Heilman JL, Lascano RJ (1991) Soil and canopy energy balance of a row crop at partial cover. Agron J 83: 744–753.

    Article  Google Scholar 

  • Hatton TJ, Catchpole EA, Vertessy RA (1990) Integration of sap flow velocity to estimate plant water use. Tree Physiol 6: 201–209.

    PubMed  Google Scholar 

  • Huber B (1932) Beobachtung und Messung Pflänzlicher Saftstrome. Ber Dtsch Bot Ges 50: 89–109.

    CAS  Google Scholar 

  • Huber B, Schmidt E (1937) Eine Kompensationsmethode zur thermoelektrischen Messung langsamer Saftstrome. Ber Dtsch Bot Ges 55: 514–529.

    Google Scholar 

  • Ishida T, Campbell GS, Calissendorff C (1991) Improved heat balance method for determining sap flow rate. Agric For Meteorol 56: 35–48.

    Article  Google Scholar 

  • Kitano M, Eguchi H (1989) Quantitative analysis of transpiration stream dynamics in an intact cucumber stem by a heat flux control method. Plant Physiol 89: 643–647.

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski TT, Leyton L, Hughes JF (1965) Pathways of water movement in young conifers. Nature 205: 830–832.

    Article  Google Scholar 

  • Kucera J, Cermak J, Penka M (1977) Improved thermal method of continually recording the transpiration flow rate dynamics. Biol Plant 19: 413–420.

    Article  Google Scholar 

  • Ladefoged K (1960) A method for measuring the water consumption of larger intact trees. Physiol Plant 13: 648–658.

    Article  Google Scholar 

  • Lassoie JP, Scott DRM, Fritschen LJ (1977) Transpiration studies in Douglas-fir using the heat pulse technique. Forest Sci 23: 377–390.

    Google Scholar 

  • Leyton L (1970) Problems and techniques in measuring transpiration from trees. In: Luckwill LC, Cuting CV (eds) Physiology of tree crops. Proc of 2nd Long Ashton Symp, 25-28 March 1969. Academic Press, London, pp 101–111.

    Google Scholar 

  • Mark WR, Crews DI (1973) Heat-pulse velocity and bordered pit condition in living Engelmann Spruce. Forest Sci 19: 291–296.

    Google Scholar 

  • Marshall DC (1958) Measurement of sap flow in conifers by heat transport. Plant Physiol 33: 385–396.

    Article  PubMed  CAS  Google Scholar 

  • Miller DR, Vavrina CA, Christensen TW (1980) Measurement of sap flow and transpiration in ring-porous oaks using a heat pulse velocity technique. For Sci 26: 485–494.

    Google Scholar 

  • Moreshet S, Cohen Y, Fuchs M (1983) Response of mature Shamouti orange trees to irrigation of different soil volumes at similar levels of available water. Irrig Sci 3: 223–236.

    Article  Google Scholar 

  • Moreshet S, Cohen Y, Green GC, Fuchs M (1990) The partitioning of hydraulic conductance within mature orange trees. J Exp Bot 41: 833–839.

    Article  Google Scholar 

  • Morikawa Y (1972) The heat pulse method and an apparatus for measuring sap flow in woody plants. J Jpn For Sci 54: 166–171.

    Google Scholar 

  • Petersen KL, Fuchs M, Moreshet S, Cohen Y, Sinoquet H (1992) Computing transpiration of sunlit and shaded cotton foliage under variable water stress. Agron J 84: 91–97.

    Article  Google Scholar 

  • Pickard WF (1973) A heat pulse method of measuring water flux in woody plant stems. Math Biosci 16: 247–262.

    Article  Google Scholar 

  • Sakuratani T (1981) A heat balance method for measuring water flux in the stem of intact plants. J Agric Meteorol 37: 9–17.

    Article  Google Scholar 

  • Sakuratani T (1984) Improvement of the probe for measuring water flow rate in intact plants with the stem heat balance method. J Agric Meteorol 40: 273–277.

    Article  Google Scholar 

  • Sakuratani T (1987) Studies on evapotranspiration from crops (2). Separate estimation of transpiration and evaporation from a soyabean field without water shortage. J Agric Meteorol 42: 309–317.

    Article  Google Scholar 

  • Sakuratani T (1990) Measurement of the sap flow rate in stem of rice plant. J Agric Meteorol 45: 277–280.

    Article  Google Scholar 

  • Schulze ED, Cermak J, Matyssek R, Penka M, Zimmerman R, Vasicek F, Gries W, Kucera J (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Lariz and Picea trees — a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66: 475–483.

    Article  Google Scholar 

  • Shakel RA, Johnson RS, Medawar CK, Phene CJ (1992) Substantial errors in estimates of sap flow using the heat balance technique on woody stems under field conditions. J Am Soc Hort Sci 117: 351–356.

    Google Scholar 

  • Steinberg SL, van Bavel CHM, McFarland MJ (1989) A gauge to measure the mass flow of sap in stems and trunks of woody plants. J Am Soc Hort Sci 114: 466–472.

    Google Scholar 

  • Steinberg SL, van Bavel CHM, McFarland MJ (1990a) Improved sap flow gauge for woody and herbaceous plants. Agron J 82: 851–854.

    Article  Google Scholar 

  • Steinberg SL, McFarland MJ, Worthington JW (1990b) Comparison of trunk and branch sap flow with canopy transpiration in pecan. J Exp Bot 41: 653–659.

    Article  Google Scholar 

  • Stone JF, Shirazi GA (1975) On the heat-pulse method for the measurement of apparent sap velocity in stems. Planta 122: 169–177.

    Article  Google Scholar 

  • Swanson RH (1972) Water transpired by trees is indicated by heat pulse velocity. Agric Meteorol 10: 277–281.

    Article  Google Scholar 

  • Swanson RH (1983) Numerical and experimental analysis of implanted-probe heat pulse velocity theory. PhD Thesis, University of Alberta, Edmonton, Alberta, Canada.

    Google Scholar 

  • Swanson RH, Whitfield WA (1981) A numerical analysis of heat pulse velocity theory and practice. J Exp Bot 32: 221–239.

    Article  Google Scholar 

  • Valancogne C, Nasr Z (1989) Une methode de measure du debit de seve brute dans petits arbres par bilan de chaleur. Agronomie 9: 609–61

    Article  Google Scholar 

  • Vieweg GH, Ziegler H (1960) Thermoelektrische Registrierung der Geschwindigkeit des Transpirationsstromes. Ber Dtsch Bot Ges 73: 221–226.

    Google Scholar 

  • Wendt CW, Brooks CR, Runkles JR (1965) Use of the thermoelectric method to measure relative sap flow in monocotyledons. Agron J 57: 637–638.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cohen, Y. (1994). Thermoelectric Methods for Measurement of Sap Flow in Plants. In: Stanhill, G. (eds) Advances in Bioclimatology. Advances in Bioclimatology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57966-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57966-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63418-5

  • Online ISBN: 978-3-642-57966-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics