Advertisement

Plurisubharmonic Functions

  • A. Sadullaev
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 8)

Abstract

Plurisubharmonic functions play a major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and, most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity.

Keywords

Harmonic Function Subharmonic Function Plurisubharmonic Function Holomorphic Extension Capacitary Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, H. (1981): Projective capacity. Ann. Math. Stud. 100, No., 3–27, Zbl.494.32001.Google Scholar
  2. Alexander, H., Wermer, J. (1983): On the approximation of singularity sets by analytic varieties. Pac. J. Math. 104, No., 263–268, Zbl.543.32005.MathSciNetzbMATHGoogle Scholar
  3. Bedford, E., Taylor, B.A. (1976): The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37, No.., 1–44, Zbl.315.31007.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Bedford, E., Taylor, B.A. (1982): A new capacity for plurisubharmonic functions. Acta Math. 149, No. 1–2, 1–40, Zb.547.32012.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Brelot, M. (1959): Éléments de la théorie classique du potential. Paris: Centre de Documentation Universitaire. 198 pp., Zbl.84, 309.Google Scholar
  6. Brelot, M. (1972): Les étapes et les aspects multiples de la théorie du potentiel. Enseign. Math., II. Ser. 18, 1–36, Zbl.235.31002.MathSciNetzbMATHGoogle Scholar
  7. Bremermann, H.J. (1956): On the conjecture of the equivalence of the plurisubharmonic functions and the Hartogs functions. Math. Ann. 131, No., 76–86, Zbl.70, 76.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Bremermann, H.J. (1959): On a generalized Dirichlet problem for plurisubharmonic functions and pseudoconvex domains. Characterization of Shilov boundaries. Trans. Am. Math. Soc. 91, No., 246–276, Zbl.91, 75.MathSciNetzbMATHGoogle Scholar
  9. Chirka, E.M. (1974): Expansion in series and speed of rational approximation for holomorphic functions with analytic singularities. Mat. Sb., Nov. Ser. 93, No., 314–324. Engl. trans.: Math. USSR, Sb. 22, 323-332 (1975), Zbl.286.32002.Google Scholar
  10. Chirka, E.M. (1976): Rational approximation of holomorphic functions with singularities of finite order. Mat. Sb., Nov. Ser. 100, No., 137–155. Engl. transl.: Math. USSR, Sb. 29, 123-138 (1978), Zbl.328.30032.Google Scholar
  11. Goluzin, G.M. (1966): Geometric Theory of Functions of a Complex Variable. Moscow: Nauka. 628 pp. English transl.: Providence 1969, Zbl.148, 306.zbMATHGoogle Scholar
  12. Gonchar, A.A. (1972): A local condition of single valuedness for analytic functions. Mat. Sb., Nov. Ser. 89, No., 148–164. Engl. transl.: Math. USSR, Sb. 18, 151-167 (1973), Zbl.247, 30033.Google Scholar
  13. Gonchar, A.A. (1974): A local condition of single valuedness for analytic functions of several variables. Mat. Sb., Nov. Ser. 93, No. 2, 296–313. Engl. transl.: Math. USSR, Sb. 22, 305-322 (1975), Zbl.286.32001.Google Scholar
  14. Hartogs, F. (1906): Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen welche nach Potenzen einer Veränderlichen fortschreizen. Math. Ann. 62, 1–88, Jbuch37, 444.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Harvey, R. (1977): Holomorphic chains and their boundaries. Proc. Symp. Pure Math. 30, No. 1, 309–382, Zbl.374.32002.Google Scholar
  16. Hayman, W.K., Kennedy, P.B. (1976): Subharmonic Functions. London, New York, San Francisco: Academic Press. 284 pp., Zbl.419.31001.zbMATHGoogle Scholar
  17. Josefson, B. (1978): On the equivalence between locally polar and globally polar sets for plurisubharmonic functions of ℂn. Ark. Mat. 16, No. 1, 109–115, Zbl.383.31003.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Kazaryan, M.V. (1983): On the holomorphic continuation of functions with special singularities in ℂn. Dokl., Akad. Nauk Arm. SSR 76, No. 1, 13–17 (Russian), Zbl.549.32007.MathSciNetzbMATHGoogle Scholar
  19. Keldysh, M.V., Lavrent’ev, M.A. (1937): On the stability of the solution to the Dirichlet problem. Izv. Akad. Nauk SSSR, Ser. Mat. 1, No. 4, 551–595 (Russian), Jbuch63, 1040.Google Scholar
  20. Landkof, N.S. (1966): Foundations of Modern Potential Theory. Moscow: Nauka. 515 pp. Engl. transl.: New York, Berlin, Heidelberg: Springer-Verlag 1972, Zbl.148, 103.Google Scholar
  21. Lelong, P. (1941): Sur quelques problèmes de la théorie des fonctions de deux variables complexes. Ann. Sci. Ecole Norm., III. Ser. 58, 83–177, Zbl.26, 15.MathSciNetGoogle Scholar
  22. Lelong, P. (1957): Ensembles singuliers impropres des fonctions plurisousharmoniques. J. Math. Pures Appl., IX. Ser. 36, No. 3, 263–303, Zbl.122, 319.MathSciNetzbMATHGoogle Scholar
  23. Lelong, P. (1966): Fonctions entières (n variables) et fonctions plurisousharmoniques de type exponentiel. Applications à l’analyse fonctionnelle. Sovrem. Probl. Teor. Anal. Funkts., Konf. Erevan 1965, 188–209, Zbl.173, 327.Google Scholar
  24. Nishino, T. (1962): Sur les ensembles pseudoconcaves. J. Math. Kyoto Univ. 1, 225–245, Zbl.109, 55.MathSciNetzbMATHGoogle Scholar
  25. Oka, K. (1942): Sur les fonctions analytiques de plusieurs variables. VI. Domaines pseudoconvexes. Tôhoku Math. J. 49, No. 1, 15–52, Zbl.60, 240.MathSciNetzbMATHGoogle Scholar
  26. Oka, K. (1953): Sur les fonctions analytiques de plusieurs variables. IX. Domaines finis sans point critique interieur. Jap. J. Math. 23, No. 1, 97–155, Zbl.53, 243.MathSciNetzbMATHGoogle Scholar
  27. Privalov, I.I. (1937): Subharmonic Functions. Moscow: Gostekhizdat. 200 pp. (Russian).Google Scholar
  28. Rudin, W. (1980): Function Theory in the Unit Ball of ℂn. New York, Berlin, Heidelberg: Springer-Verlag. 436 pp., Zbl.495.32001.CrossRefGoogle Scholar
  29. Sadullaev, A. (1976): A boundary uniqueness theorem in ℂn. Mat. Sb., Nov. Ser. 101, No. 4, 568–583. Engl. transl.: Math. USSR, Sb. 30, 501-514 (1978), Zbl.346.32024.MathSciNetGoogle Scholar
  30. Sadullaev, A. (1980): The operator (dd c u)n and condenser capacities. Dokl. Akad. Nauk SSSR 251, No. 1, 44–47. Engl. Transl.: Sov. Math., Dokl. 21, 387-391 (1980), Zbl.488.31005.MathSciNetGoogle Scholar
  31. Sadullaev, A. (1981): Plurisubharmonic measures and capacities on complex manifolds. Usp. Mat. Nauk 36, No. 4, 53–105. Engl. transl.: Russ. Math. Surv. 36, No. 4, 61-119 (1981), Zbl.475.31006.MathSciNetzbMATHGoogle Scholar
  32. Sadullaev, A. (1982a): Continuation of plurisubharmonic functions from a submanifold. Dokl. Akad Nauk UzSSR 5, No. 1, 3–4 (Russian).Google Scholar
  33. Sadullaev, A. (1982b): Rational approximation and pluripolar sets. Mat. Sb., Nov. Ser. 119, No. 1, 96–118. Engl. transl.: Math. USSR, Sb. 47, 91-113 (1984), Zbl.511.32011.MathSciNetGoogle Scholar
  34. Sadullaev, A. (1984): Criteria for rapid rational approximation in ℂn. Mat. Sb., Nov. Ser. 125, No. 2, 269–279. Engl. transl.: Math. USSR, Sb. 53, 271-281 (1986), Zbl.592.32013.MathSciNetGoogle Scholar
  35. Shabat, B.V. (1976): Introduction to Complex Analysis, Vol. 2. Moscow: Nauka. 400 pp. French transl.: Moscow: MIR 1990, Zbl.578.32001.Google Scholar
  36. Shabat, B.V. (1982): Distribution of the Value of Holomorphic MApplngs. Moscow: Nauka. 288 pp. English transl.: Transl. Math. Monogr. 61, Providence (1985), Zbl.537.32008.Google Scholar
  37. Siciak, J. (1962): On some extremal functions and their applications in the theory of analytic functions of several complex variables. Trans. Am. Math. Soc. 105, No. 2, 322–357, Zbl.l 11, 81.MathSciNetzbMATHCrossRefGoogle Scholar
  38. Siciak, J. (1969): Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of ℂn. Ann. Pol. Math. 22, No. 1, 145–171, Zbl.185, 152.MathSciNetzbMATHGoogle Scholar
  39. Slodkowski, Z. (1990): Polynomial hulls with convex fibers and complex geodesics. J. Funct. Anal. 94, 156–176, Zbl.717.32009.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Vladimirov, V.S. (1964): Methods of the Theory of Functions of Several Complex Variables. Moscow: Nauka. 411 pp. French Transl.: Les fouctions de plusieurs variables complexes et leurs application. Paris: Dunod 1967, 338 pp., Zbl.125, 319.Google Scholar
  41. Zakharyuta, V.P. (1974): Extremal plurisubharmonic functions, Hilbert scales and isomorphisms of spaces of analytic functions of several variables, I, II. Teor. Funk. Funkts. Anal. Priloz. 19, 133–157, Zbl.336.46031; 21, 65-83, Zbl.336.46032. (Russian).zbMATHGoogle Scholar
  42. Zakharyuta, V.P. (1976): Separately analytic functions, generalized Hartogs theorem, and envelopes of holomorphy. Mat. Sb., Nov. Ser. 101, No. 1, 57–76. Engl. transl.: Math. USSR, Sb. 30, 51-67 (1978), Zbl.357.32002.Google Scholar
  43. References Added (by Author) in Translation.Google Scholar
  44. Alexander, H., Wermer, J. (1985): Polynomial hulls with convex fibers. Math. Ann. 271, 99–109, Zbl.538.32011.MathSciNetzbMATHCrossRefGoogle Scholar
  45. Alexander, H., Wermer, J. (1989): Polynomial hulls of sets with intervals as fibers. Complex Variables, Theory Appl. 11, 11–19, Zbl.673.32017.MathSciNetzbMATHCrossRefGoogle Scholar
  46. Aupetit, B. (1984): Geometry of pseudoconvex open sets and distribution of values of analytic multivalued functions. Contemp. Math. 32, 15–34, Zbl.595.32027.MathSciNetCrossRefGoogle Scholar
  47. Berndtsson, B., Ransford, T.J. (1986): Analytic multifunctions, the ∂-equation, and a proof of the Corona theorem. Pac. J. Math. 124, 57–72, Zbl.602.32002.MathSciNetzbMATHGoogle Scholar
  48. Cegrell, U. (1978): Construction of capacities on ℂn. Upps. Univ. Dep. of Math, 1, 1–18.Google Scholar
  49. Cegrell, U. (1986): Sums of continuous plurisubharmonic functions and the Complex Monge-Ampère operator in ℂn. Math. Z. 193, 373–380, Zbl.624.31004.MathSciNetzbMATHCrossRefGoogle Scholar
  50. Cegrell, U. (1990): The Dirichlet problem for the Complex Monge-Ampère operator: Stability in L 2. Univ. of Umea, Dep. of Math., 9, 1–7, appeared in Mich. Math. J. 39, 145-151 (1992).Google Scholar
  51. Demailly, J.P. (1987): Mesures de Monge-Ampère et mesures pluriharmoniques. Math. Z. 194, 519–564, Zbl.595.32006.MathSciNetzbMATHCrossRefGoogle Scholar
  52. Fornaess, J.E., Wiegerinck, J. (1989): Approximation of plurisubharmonic functions. Ark. Mat. 27, No. 2, 257–272, Zbl.693.32009.MathSciNetzbMATHCrossRefGoogle Scholar
  53. Korevaar, J. (1986): Polynomial approximation numbers, capacities and extended Green functions for ℂ and ℂn. Approximation Theory V, Proc. Int. Symp. College Station 1986, 97–127, Zbl.612.41011.Google Scholar
  54. Lempert, L. (1982): Holomorphic retracts and intrinsic metrics in convex domains. Anal. Math. 8, 257–261, Zbl.509.32015.MathSciNetzbMATHCrossRefGoogle Scholar
  55. Levenberg, N. (1985): Monge-Ampère measures associated to extremal plurisubharmonic functions in ℂn. Trans. Am. Math. Soc. 289, 333–343, Zbl.541.31009.MathSciNetzbMATHGoogle Scholar
  56. Nguyen Thanh Van; Zeriahi, A. (1983): Familles de polynômes presque partout bornées. Bull. Sci. Math., II. Ser. 107, 81–91, Zbl.523.32011.MathSciNetzbMATHGoogle Scholar
  57. Nguyen Thanh Van (1989): Bases polynomials et approximation des fonctions séparément harmoniques dans ℂv. Bull. Sci. Math., II. Sér. 113, No. 3, 349–361, Zbl.677.41006.zbMATHGoogle Scholar
  58. Slodkowski, Z. (1986): An analytic set-valued selection and its applications to the Corona theorem, to polynomial hulls and joint spectra. Trans. Am. Math. Soc. 294, 367–377, Zbl.594.32008.MathSciNetzbMATHCrossRefGoogle Scholar
  59. Slodkowski, Z. (1990): Polynomial hulls with convex fibers and complex geodesics. J. Funct. Anal. 94, 156–176, Zbl.717.32009.MathSciNetzbMATHCrossRefGoogle Scholar
  60. Zeriahi, A. (1985): Capacité, constante de Chebyshev et polynômes orthogonaux associés a un compact de ℂn. Bull. Sci. Math. II. Ser. 109, 325–335, Zbl.583.31006.MathSciNetzbMATHGoogle Scholar
  61. Zeriahi, A. (1990): Bases de Schauder et isomorphismes d’espaces de fonctions holomorphes, C.R. Acad. Sci., Paris, Sér. I 310, 691–694, Zbl.721.32002.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • A. Sadullaev

There are no affiliations available

Personalised recommendations