Metabolic Status and Reaction to Heat of Normal and Tumor Tissue

  • P. W. Vaupel
  • D. K. Kelleher
Part of the Medical Radiology book series (MEDRAD)


The occurrence of differential heating and differential thermal sensitivity between malignant tumors and normal tissues is thought to be due to limited heat dissipation and energy depletion in many solid tumors which in turn results from an inadequately functioning tumor microcirculation (Jain and Ward-Hartley 1984; Song 1984, 1991; Vaupel and Kallinowski 1987; Reinhold 1988; Vaupel et al. 1988a; Vaupel 1990). As a consequence of the latter pathophysiological condition, supply and drainage function are restricted in many solid tumors or, at least, in some tumor areas, thus creating a hostile metabolic microenvironment characterized by tissue hypoxia, acidosis, and energy depletion. Thermal sensitivity has been shown to depend greatly on tumor pH, and on energy and nutritional status of the tumors treated. Although no conclusive evidence is so far available concerning the ranking of these pivotal factors, there is no doubt that the rate and homogeneity of blood perfusion plays a paramount role in determining the metabolic and energy status.


Tumor Blood Flow Local Hyperthermia Microcirculatory Function Bioenergetic Status Radiat Oncol Bioi Phys 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderstam B, Vaca C, Harms-Ringdahl M (1992) Lipid peroxide levels in a murine adenocarcinoma exposed to hyperthermia: the role of glutathione depletion. Radiat Res 132: 296–300PubMedCrossRefGoogle Scholar
  2. Ausmus PL, Wilke AV, Frazier DL (1992) Effects of hyperthermia on blood flow and cis-diamminedichloroplatinum (II) pharmacokinetics in murine mammary adenocarcinomas. Cancer Res 52: 4965–4968PubMedGoogle Scholar
  3. Bowman HF, Martin GT, Newman WH, Kumar S, Welch C, Bornstein B, Herman TS (1992) Human tumor perfusion measurements during hyperthermia therapy. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 1. Arizona Board of Regents, Tucson, p A17Google Scholar
  4. Busse M, Vaupel P (1994) Accumulation of purine catabolites in rat tumors exposed to hyperthermia. 14th Conf Europ Soc Hyperthermic Oncol, Amsterdam, Book of AbstractsGoogle Scholar
  5. Dellian M, Walenta S, Kuhnle GEH, Gamarra F, Mueller-Klieser W, Goetz AE (1993) Relation between autoradiographically measured blood flow and ATP concentrations obtained from imaging bioluminescence in tumors following hyperthermia. Int J Cancer 53: 785–791PubMedCrossRefGoogle Scholar
  6. Dewey WC (1989) The search for critical cellular targets damaged by heat. Radiat Res 120: 191–204PubMedCrossRefGoogle Scholar
  7. Dewhirst MW, Charles HC, Sostman HD, Leopold KA, Oleson JR (1991) MRI and MRS for prognostic evaluation and therapy monitoring in soft tissue sarcomas treated with hyperthermia and radiotherapy. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research: a twentieth century perspective, vol II. Academic Press, San Diego, pp 957–961Google Scholar
  8. Gerweck LE (1988) Modifiers of thermal effects: environmental factors. In: Urano M, Douple E (eds) Hyperthermia and oncology, vol I. VSP, Utrecht, pp 83–98Google Scholar
  9. Gerweck LE, Jennings M, Richards B (1980) Influence of pH on the response of cells to single and split dose of hyperthermia. Cancer Res 40: 4019–4024PubMedGoogle Scholar
  10. Gerweck LE, Dahlberg WK, Epstein LF, Shimm D (1984) Influence of nutrient and energy deprivation on cellular response to single and fractionated heat treatments. Radiat Res 99: 573–581PubMedCrossRefGoogle Scholar
  11. Gerweck LE, Urano M, Koutcher J, Feilenz MP, Kahn J (1989) Relationship between energy status, hypoxic cell fraction, and hyperthermic sensitivity in a murine fibrosarcoma. Radiat Res 117: 448–458PubMedCrossRefGoogle Scholar
  12. Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64: 425–427PubMedCrossRefGoogle Scholar
  13. Hetzel FW, Chopp M (1990) Changes in muscle pH following hyperthermia. Radiat Res 122: 229–233PubMedCrossRefGoogle Scholar
  14. Hetzel FW, Avery K, Chopp M (1989) Hyperthermic “dose“ dependent changes in intralesional pH. Int J Radiat Oncol Biol Phys 16: 183–186PubMedCrossRefGoogle Scholar
  15. Hetzel FW, Chopp M, Dereski MO (1992) Variations in pO2 and pH response to hyperthermia: dependence on transplant site and duration of treatment. Radiat Res 131: 152–156PubMedCrossRefGoogle Scholar
  16. Huch R, Huch A (1985) Transkutaner pO2. Prinzip, Handhabung, klinische Erfahrung und Grenzen der Methode. In: Ehrly AM, Hauss J, Huch R (eds) Klinische Sauerstoffdruckmessung: Gewebesauerstoffdruck und transkutaner Sauerstoffdruck bei Erwachsenen. Münchner Wissenschaftliche Publikationen, München, pp 53–59Google Scholar
  17. Jain RK, Ward-Hartley K (1984) Tumor blood flow — characterization, modifications, and role in hyperthermia. IEEE Trans Sonics Ultrasonics SU-31: 504–526CrossRefGoogle Scholar
  18. Kallinowski F, Vaupel P (1989) Factors governing hyperthermia-induced pH changes in Yoshida sarcoma. Int J Hyperthermia 5: 641–652PubMedCrossRefGoogle Scholar
  19. Kavanagh BD, Coffey BE, Needham D, Hochmuth RM, Dewhirst MW (1993) The effect of flunarizine on erythrocyte suspension viscosity under conditions of extreme hypoxia, low pH, and lactate treatment. Br J Cancer 67: 734–741PubMedCrossRefGoogle Scholar
  20. Kelleher DK, Engel T, Vaupel P (1995) Changes in microregional perfusion, oxygénation, ATP and lactate distribution in subcutaneous rat tumours upon waterfiltered IR-A hyperthermia. Int J Hyperthermia 11: 241–255PubMedCrossRefGoogle Scholar
  21. Koutcher JA, Barnett D, Kornblith AB, Cowburn D, Brady TJ, Gerweck LE (1990) Relationship of changes in pH and energy status to hypoxic cell fraction and hyperthermia sensitivity. Int J Radiat Oncol Biol Phys 18: 1429–1435PubMedCrossRefGoogle Scholar
  22. Krüger W, Mayer WK, Schaefer C, Stohrer M, Vaupel P (1991) Acute changes of systemic parameters in tumourbearing rats, and of tumour glucose, lactate, and ATP levels upon local hyperthermia and/or hyperglycaemia. J Cancer Res Clin Oncol 117: 409–415PubMedCrossRefGoogle Scholar
  23. Krüger W, Gersing E, Vaupel P (1993) Electrical impedance spectroscopy (1 Hz-10 MHz) of experimental tumors in vivo upon local hyperthermia. 13th Conf Europ Soc Hyperthermic Oncol, Brüssel, Book of AbstractstsGoogle Scholar
  24. Lammertsma AA, Wilson CB, Jones T (1991) In vivo physiological studies in human tumors using positron emission tomography. Funktionsanalyse biologischer Systeme 20: 319–325Google Scholar
  25. Lin JC, Levitt SH, Song CW (1991) Relationship between vascular thermotolerance and intratumor pH. Int J Radiat Oncol Biol Phys 22: 123–129CrossRefGoogle Scholar
  26. Liu FF, Diep K, Hill RP (1992) Intracellular pH regulation and heat sensitivity in vitro. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 1. Arizona Board of Regents, Tucson, p 132Google Scholar
  27. Lyons JC, Kim GE, Song CW (1992) Modification of intracellular pH and thermosensitivity. Radiat Res 129: 79–87PubMedCrossRefGoogle Scholar
  28. Mayer WK, Stohrer M, Krüger W, Vaupel P (1992) Laser Doppler flux and tissue oxygénation of experimental tumours upon local hyperthermia and/or hyperglycaemia. J Cancer Res Clin Oncol 118: 523–528PubMedCrossRefGoogle Scholar
  29. Molls M, Feldmann HJ (1991) Clinical investigations of blood flow in malignant tumors of the pelvis and the abdomen in patients undergoing thermoradiotherapy. Funktionsanalyse biologischer Systeme 20: 143–153Google Scholar
  30. Newell K, Tannock I (1991) Regulation of intracellular pH and viability of tumor cells. Funktionsanalyse biologischer Systeme 20: 219–234Google Scholar
  31. Osinsky SP, Bubnovskaja LN, Ganusevich II (1993) Tumor energy status upon induced hyperglycemia and antitumor effect of local hyperthermia. Exp Oncol 15: 60–65Google Scholar
  32. Reinhold HS (1988) Physiological effects of hyperthermia. Recent Results Cancer Res 107: 32–43PubMedCrossRefGoogle Scholar
  33. Roszinski S, Wiedemann G, Jiang SZ, Baretton G, Wagner T, Weiss C (1991) Effects of hyperthermia and/or hyperglycemia on pH and pO2 in well oxygenated xenotransplanted human sarcoma. Int J Radiat Oncol Biol Phys 20: 1273–1280PubMedCrossRefGoogle Scholar
  34. Schaefer C, Mayer WK, Krüger W, Vaupel P (1993) Microregional distributions of glucose, lactate, ATP and tissue pH in experimental tumours upon local hyperthermia and/or hyperglycaemia. J Cancer Res Clin Oncol 119: 599–608PubMedCrossRefGoogle Scholar
  35. Skibba JL, Quebbeman EJ, Kalbafleisch JH (1986) Nitrogen metabolism and lipid peroxidation during hyperthermic perfusion of human livers with cancer. Cancer Res 46: 6000–6003PubMedGoogle Scholar
  36. Song CW (1984) Effect of hyperthermia on blood flow and microenvironment. Cancer Res (Suppl) 44: 4721s–4730sPubMedGoogle Scholar
  37. Song CW (1991) Tumor blood flow response to heat. Funktionsanalyse biologischer Systeme 20: 123–141Google Scholar
  38. Stohrer M, Fleckenstein W, Vaupel P (1992) Effect of localized hyperthermia on tissue oxygen tension in superficial tumours. In: Ehrly AM, Fleckenstein W, Landgraf M (eds) Clinical oxygen pressure measurement III. Blackwell Wissenschaft, Berlin, pp 121–128Google Scholar
  39. Streffer C (1982) Aspects of biochemical effects by hyperthermia. Natl Cancer Inst Monogr 61: 11–17PubMedGoogle Scholar
  40. Streffer C (1984) Mechanisms of heat injury. In: Overgaard J (ed) Hyperthermic oncology, 1984, vol 2. Taylor and Francis, London, pp 213–222Google Scholar
  41. Streffer C (1988) Aspects of metabolic change after hyperthermia. Recent Results Cancer Res 107: 7–16PubMedCrossRefGoogle Scholar
  42. Streffer C (1990) Biological basis of thermotherapy. In: Gautherie M (ed) Biological basis of oncologic thermotherapy. Springer, Berlin Heidelberg New York, pp 1–71CrossRefGoogle Scholar
  43. Streffer C, van Beuningen D (1987) The biological basis for tumour therapy by hyperthermia and radiation. Recent Results Cancer Res 104: 24–70PubMedCrossRefGoogle Scholar
  44. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49: 4373–4384PubMedGoogle Scholar
  45. Van den Berg AP, Wike-Hooley JL, Broekmeyer-Reurink P, van der Zee J, Reinhold HS (1989) The relationship between the unmodified initial tissue pH of human tumours and the response to combined radiotherapy and local hyperthermia treatment. Eur J Cancer Clin Oncol 25: 73–78PubMedCrossRefGoogle Scholar
  46. Van den Berg AP, van de Merwe SA, van der Zee J (1991) Prognostic value of tumor tissue pH for tumor response to hyperthermia. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research: a twentieth century perspective, vol II. Academic Press, San Diego, pp 951–956Google Scholar
  47. Van de Merwe S, van den Berg AP, van der Zee J, Reinhold HS (1990) Measurement of tumor pH during microwave induced experimental and clinical hyperthermia with a fiber optic pH measurement system. Int J Radiat Oncol Biol Phys 18: 51–57PubMedCrossRefGoogle Scholar
  48. Van der Zee J, Broekmeyer-Reurink MP, van den Berg AP, van Geel BN, Jansen RFM, Kroon BBR, van Wjik J, Hagenbeek A (1989) Temperature distribution and pH changes during hyperthermic regional isolation perfusion. Eur J Cancer Clin Oncol 25: 1157–1163PubMedCrossRefGoogle Scholar
  49. Vaupel P (1990) Pathophysiological mechanisms of hyperthermia in cancer therapy. In: Gautherie M (ed) Biological basis of oncologic thermotherapy. Springer, Berlin Heidelberg New York, pp 73–134CrossRefGoogle Scholar
  50. Vaupel P (1992) Physiological properties of malignant tumours. NMR Biomed 5: 220–225PubMedCrossRefGoogle Scholar
  51. Vaupel PW (1993a) Effects of physiological parameters on tissue response to hyperthermia: new experimental facts and their relevance to clinical problems. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology, 1992, vol 2. Arizona Board of Regents, Tucson, pp 17–23Google Scholar
  52. Vaupel P (1993b) Oxygénation of solid tumors. In: Teicher BA (ed) Drug resistance in oncology. Marcel Dekker, New York, pp 53–85Google Scholar
  53. Vaupel P, Kallinowski F (1987) Physiological effects of hyperthermia. Recent Results Cancer Res 104: 71–109PubMedCrossRefGoogle Scholar
  54. Vaupel P, Mueller-Klieser W (1983) Interstitieller Raum und Mikromilieu in malignen Tumoren. Mikrozirk Forsch Klin 2: 78–90Google Scholar
  55. Vaupel P, Kallinowski F, Kluge M (1988a) Pathophysiology of tumors in hyperthermia. Recent Results Cancer Res 107: 65–75PubMedCrossRefGoogle Scholar
  56. Vaupel P, Kluge M, Ambroz MC (1988b) Laser Doppler flowmetry in subepidermal tumours and in normal skin of rats during localized ultrasound hyperthermia. Int J Hyperthermia 4: 307–321PubMedCrossRefGoogle Scholar
  57. Vaupel P, Kallinowski F, Okunieff P (1989a) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49: 6449–6465PubMedGoogle Scholar
  58. Vaupel P, Okunieff P, Kallinowski F, Neuringer LJ (1989b) Correlation between 31P-NMR spectroscopy and tissue O2 tension measurements in a murine fibrosarcoma. Radiat Res 120: 477–493PubMedCrossRefGoogle Scholar
  59. Vaupel P, Okunieff P, Kluge M (1989c) Response of tumour red blood cell flux to hyperthermia and/or hyperglycaemia. Int J Hyperthermia 5: 199–210PubMedCrossRefGoogle Scholar
  60. Vaupel P, Okunieff P, Neuringer LJ (1990) In vivo 31P-NMR spectroscopy of murine tumors before and after localized hyperthermia. Int J Hyperthermia 6: 15–31PubMedCrossRefGoogle Scholar
  61. Vaupel P, Schienger K, Höckel M (1991) Blood flow and oxygénation of human tumors. Funktionsanalyse biologischer Systeme 20: 165–185Google Scholar
  62. Vaupel P, Kelleher DK, Krüger W (1992) Water-filtered infrared-A radiation: a novel technique to heat superficial tumors. Strahlenther Onkol 168: 633–639PubMedGoogle Scholar
  63. Waterman FM, Tupchong L, Nerlinger RE, Matthews J (1991) Blood flow in human tumors during local hyperthermia. Int J Radiat Oncol Biol Phys 20: 1255–1262PubMedCrossRefGoogle Scholar
  64. Wiedemann G, Roszinski S, Biersack A, Weiss C, Wagner T (1992) Local hyperthermia enhances cyclophosphamide, ifosfamide and cis-diamminedichloroplatinum cytotoxicity on human-derived breast carcinoma and sarcoma xenografts in nude mice. J Cancer Res Clin Oncol 118: 129–135PubMedCrossRefGoogle Scholar
  65. Wike-Hooley JL, van der Zee J, van Rhoon GC, van den Berg AP, Reinhold HS (1984) Human tumour pH changes following hyperthermia and radiation therapy. Eur J Cancer Clin Oncol 20: 619–623PubMedCrossRefGoogle Scholar
  66. Yoshikawa T, Kokura S, Tainaka K, Itani K, Oyamada H, Kaneko T, Naito Y, Kondo M (1993) The role of active oxygen species and lipid peroxidation in the antitumor effect of hyperthermia. Cancer Res 53: 2326–2329PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. W. Vaupel
    • 1
  • D. K. Kelleher
    • 1
  1. 1.Institute of Physiology and PathophysiologyUniversität MainzMainzGermany

Personalised recommendations