Genetic Transformation in Festuca arundinacea Schreb. (Tall Fescue) and Festuca pratensis Huds. (Meadow Fescue)

  • G. Spangenberg
  • Z.-Y. Wang
  • M. P. Vallés
  • I. Potrykus
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 34)

Abstract

Tall fescue (Festuca arundinacea Schreb.) is a wind-pollinated, highly self-infertile polyploid perennial cool-season forage, turf, and conservation grass. It is indigenous to Europe, also naturally occuring on the Baltic coasts throughout the Caucasus, in western Siberia, and extending into China. Introductions have been made into North and South America, Australia, New Zealand, Japan, and South and East Asia (Barnes 1990).

Keywords

Sucrose Maize Carbide Europe Agarose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aastveit AH, Aastveit K (1989) Genetic variations and inheritance of quantitative characters in two populations of meadow fescue (Festuca pratensis, Huds.) and their hybrid. Hereditas 111: 103–114CrossRefGoogle Scholar
  2. Asano Y, Otsuki Y, Ugaki M (1991) Electroporation-mediated and silicon carbide fiber-mediated DNA delivery in Agrostis alba L. (Redtop). Plant Sci 79: 247–252CrossRefGoogle Scholar
  3. Asay KH, Frakes RV, Buckner RC (1979) Breeding and Cultivars. In: Buckner RC, Bush LP (eds) Tall fescue. Am Soc Agron, MadisonGoogle Scholar
  4. Barnes RF (1990) Importance and problems of tall fescue. In: Kasperbauer MJ (ed) Biotechnology in tall fescue improvement. CRC Press, Boca Raton, pp 2–12Google Scholar
  5. Bilang R, Lida S, Peterhans A, Potrykus I, Paszkowski J (1991) The 3′-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tobacum. Gene 100: 247–250PubMedCrossRefGoogle Scholar
  6. Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais J, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1196PubMedCrossRefGoogle Scholar
  7. Buckner RC, Bush LP (1979) Tall fescue. Am Soc Agron, MadisonGoogle Scholar
  8. Buckner RC, Todd JR, Burrus PB, Barnes RF (1967) Chemical composition, palatability, and digestibility of ryegrass-tall fescue hybrids, Kenwell, and Kentucky 31 tall fescue varieties. Agron J 59: 345–349CrossRefGoogle Scholar
  9. Buckner RC, Burrus PB, Cornelius PL, Bush PL, Leggett JE (1981) Genetic variability and heritability of certain forage quality and mineral constituents in Lolium-Festuca hybrid derivatives. Crop Sci 21: 419–423CrossRefGoogle Scholar
  10. Cabanes-Bastos E, Day AG, Lichtenstein CP (1989) A sensitive and simple assay for neomycin phosphotransferase II activity in transgenic tissue. Gene 77: 169–177PubMedCrossRefGoogle Scholar
  11. Chen Y (1986) Anther and pollen culture of rice. In: Hu H, Yang HY (eds) Haploids of higher plants in vitro. China Academic and Springer, Berlin Heidelberg New York, pp 1–25Google Scholar
  12. De Block M, Botterman J, Vandwiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 9: 2513–2518Google Scholar
  13. Donn G, Nilges M, Morocz S (1990) Stable transformation of maize with a chimaeric modified phosphinothricin-acyltransferase gene from Streptomyces viridochromogens. In: Nijkamp HJJ, van der Plas LHW, Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer, Dordrecht, Abstr A2-38, p53Google Scholar
  14. Dretzen G (1981) A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal Biochem 112: 295–298PubMedCrossRefGoogle Scholar
  15. Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13PubMedCrossRefGoogle Scholar
  16. Ha SB, Wu FS, Thome TK (1992) Transgenic turf-type tall fescue (Festuca arundinacea Schreb.) plants regenerated from protoplasts. Plant Cell Rep 11: 601–604CrossRefGoogle Scholar
  17. Hauptmann RM, Ozias-Atkins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil IK, Fraley RT (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6: 265–270CrossRefGoogle Scholar
  18. Hauptmann RM, Vasil V. Ozias-Atkins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86: 602–606PubMedCrossRefGoogle Scholar
  19. Hensgens LAM, de Bakker EPHM, van Os-Ruygrok EP, Rueb S, van der Mark F, van der Maas HM, van der Veen M, Kooman-Gersmann M, Hart L, Schilperoort RA (1993) Transient and stable expression of gusA fusions with rice genes in rice, barley and perennial ryegrass. Plant Mol Biol 22: 1101–1127PubMedCrossRefGoogle Scholar
  20. Horn ME, Shillito RD, Conger BV, Harms CT (1988) Transgenic plants of Orchardgrass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep 7: 469–472CrossRefGoogle Scholar
  21. Hulten E (1971) Atlas of the distribution of vascular plants in northwestern Europe. General-stabens Litografiska Anstalt, StockholmGoogle Scholar
  22. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405CrossRefGoogle Scholar
  23. Kasperbauer MJ (1990) Plant regeneration and evaluation. In: Kasperbauer MJ (ed) Biotechnology in tall fescue improvement. CRC Press, Boca Raton, pp 59–78Google Scholar
  24. Kaul K (1990) Potential biotechnological approaches. In: Kasperbauer MJ (ed) Biotechnology in tall fescue improvement. CRC Press, Boca Raton, pp 13–23Google Scholar
  25. Kyozuka J, Hayashi Y, Shimamoto K (1987) High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Mol Gen Genet 206: 408–413CrossRefGoogle Scholar
  26. Lichtenstein C, Draper J (1985) Genetic engineering of plants. In: Glover DM (ed) DNA cloning, vol II. IRL Press, Oxford, pp 67–119Google Scholar
  27. McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act 1) 5′ region for use in monocot transformation. Mol Gen Genet 231: 150–160PubMedCrossRefGoogle Scholar
  28. Menczel L, Nagy F, Kiss Z, Maliga P (1981) Streptomycin resistant and sensitive somatic hybrids of Nicotiana tobacum + N. knightiana: correlation of resistance to N. tobacum plastids. Theor Appl Genet 59: 191–195CrossRefGoogle Scholar
  29. Müller AJ, Grafe R (1978) Isolation and characterization of cell lines of Nicotiana tobacum lacking nitrate reductase. Mol Gen Genet 161: 67–76CrossRefGoogle Scholar
  30. Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F (1987) Hybrid genes in the analysis of transformation condition. Plant Mol Biol 8: 363–373CrossRefGoogle Scholar
  31. Pérez-Vicente R, Wen, XD, Wang, XY, Leduc N, Sautter C, Wehrli E, Potrykus I, Spangenberg G (1993) Culture of vegetative and floral meristems in ryegrasses: potential targets for micro-ballistic transformation. J Plant Physiol 142: 610–617CrossRefGoogle Scholar
  32. Pérez-Vicente R, Petris L, Osusky M, Potrykus I, Spangenberg G (1992) Molecular and cytogenetic characterization of repetitive DNA sequences from Lolium and Festuca: applications in the analysis of Festulolium hybrids. Theor Appl Genet 84: 145–154CrossRefGoogle Scholar
  33. Pietrzak M, Shillito RD, Hohn T, Potrykus I (1986) Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucl Acid Res 14: 5857–5868CrossRefGoogle Scholar
  34. Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito R (1985) Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199: 183–188CrossRefGoogle Scholar
  35. Reis PJ (1989) The influence of absorbed nutrients on wool growth. In: Rogers GE, Reis PJ, Ward KA, Marshall RC (eds) The biology of wool and hair. Chapman and Hall, LondonGoogle Scholar
  36. Reis PJ, Schinckel PG (1963) Some effects of sulfur-containing amino acids on the growth and composition of wool. Aust J Biol Sci 16: 218–230Google Scholar
  37. Rogers GE (1990) Improvement of wool production through genetic engineering. TibTech 8: 6–11CrossRefGoogle Scholar
  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning-a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  39. Schocher RJ, Shillito RD, Saul MW, Paszkowski J, Potrykus I (1986) Co-transformation of unlinked foreign genes into plants by direct gene transfer. Biotechnology 4: 1093–1096CrossRefGoogle Scholar
  40. Shillito RD, Paszkowski J, Müller M, Potrykus I (1983) Agarose plating and a bead-type culture technique enable and stimulate development of protoplast-derived colonies in a number of plant species. Plant Cell Rep 2: 244–247CrossRefGoogle Scholar
  41. Siegel MR, Latch GC, Johnson MC (1985) Acremonium fungal endophytes of tall fescue and perennial ryegrass: significance and control. Plant Dis 2: 179–183Google Scholar
  42. Spangenberg G, Freydl E, Osusky M, Nagel J, Potrykus I (1991) Organelle transfer by micro-fusion of defined protoplast-cytoplast pairs. Theor Appl Genet 81: 477–486CrossRefGoogle Scholar
  43. Spangenberg G, Wang ZY, Nagel J, Potrykus I (1994). Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.). Plant Sci 97: 83–94CrossRefGoogle Scholar
  44. Spangenberg G, Wang ZY, Wu XL, Nagel J, Iglesias VA, Potrykus I (1995) Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J Plant Physiol (in press)Google Scholar
  45. Takamizo T, Suginobu K, Ohsugi R (1990) Plant regeneration from suspension culture derived protoplasts of tall fescue (Festuca arundinacea Schreb.) of a single genotype. Plant Sci 72: 125–131CrossRefGoogle Scholar
  46. Takamizo T, Spangenberg G, Suginobu K, Potrykus I (1991) Intergeneric somatic hybridization in Gramineae: somatic hybrid plants between tall fescue (Festuca arundinacea Schreb.) and Italian ryegrass (Lolium multiflorum Lam.). Mol Gen Genet 231: 1–6PubMedCrossRefGoogle Scholar
  47. Taylor MG, Vasil IK (1991) Histology of, and physical factors affecting transient GUS expression in pearl millet [Pennisetum glaucum(L.) R. Br.] embryos following microprojectile bombardment Plant Cell Rep 10: 120–125Google Scholar
  48. Vallés MP, Wang ZY, Montavon P, Potrykus I, Spangenberg G (1993) Analysis of genetic stability of plants regenerated from suspension cultures and protoplasts of meadow fescue (Festuca pratensis Huds.). Plant Cell Rep 12: 101–106CrossRefGoogle Scholar
  49. Wang ZY, Takamizo T, Iglesias VA, Osusky M, Nagel J, Potrykus I, Spangenberg G (1992) Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Biotechnology 10: 691–696PubMedCrossRefGoogle Scholar
  50. Wang ZY, Valles MP, Montavon P, Potrykus I, Spangeberg G (1993) Fertile plant regeneration from protoplasts of meadow fescue (Festuca pratensis Huds.). Plant Cell Rep 12: 95–100CrossRefGoogle Scholar
  51. Zhong H, Bolyard, MG, Srinivasan D, Stickelen M (1993) Transgenic plants of turfgrass (Agrostis palustris Huds.) from microprojectile bombardment of embryogenic callus. Plant Cell Rep 13, 1–6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • G. Spangenberg
    • 1
  • Z.-Y. Wang
    • 1
  • M. P. Vallés
    • 1
  • I. Potrykus
    • 1
  1. 1.Institute for Plant SciencesSwiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations